Интеллектуализация использования аппаратных ресурсов центра обработки данных, оказывающего услуги облачных вычислений
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Hardware resource use intellectualization of data centers providing cloud-computing services

idMetelkin Y.V., idMakoviy K.A.

UDC 004.9
DOI: 10.26102/2310-6018/2021.35.4.036

  • Abstract
  • List of references
  • About authors

Nowadays, cloud computing technology is gaining popularity. That is a technology in which the computer resources of a data center are provided for a user over a network as an online service. Demand stimulates the growth in the number and size of data centers that deliver these services. The pandemic has led to the transition of many services to online mode. Many organizations have noted the effectiveness of remote work and, therefore, the prevalence of distance learning is growing. Thus, there is a need to optimize the operation of service providers’ IT infrastructure in order to increase its cost-effectiveness and environmental friendliness (compliance with the Green computing concept) while maintaining a predetermined level of service quality. One of the key challenges of providing cloud services is the optimal distribution of virtual machines on physical servers. This problem has been studied by many researchers, and in this article the analysis of the existing approaches to its solution is carried out. All of them are based on the current workload examination and then adjusting the allocation of virtual machines. This paper proposes hardware resource use intellectualization of a datacenter, which involves proactive management of hardware platforms, placement of virtual machines, based on the prediction of the workload in the future. To test the outlined approach, we used the capabilities of the CloudSim framework.

1. Gartner, Gartner forecasts worldwide public cloud revenue to grow172020. Available from: https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner- forecasts-worldwide-public-cloud-revenue-to-grow-17-percent-in-2020 (accessed 24.04.2021).

2. Makoviy K., Khitskova Y. Estimating the Cost of Implementing Virtual Desktops as a Stage of Project Management in the Field of Cloud Technologies. International Russian Automation Conference. Springer, Cham. 2019;641:1034–1043.

3. Makovij K. A., Shipilov N.V. Analiz potrebnostej virtual'noj mashiny v resursah servera VDI. Aktual'nye problemy prikladnoj matematiki, informatiki i mekhaniki: sbornik trudov mezhdunarodnoj nauchno-tekhnicheskoj konferencii, Voronezh, 12-15 sentyabrya 2016 goda. Voronezh: Nauchno-issledovatel'skie publikacii. 2016:100–103. (In Russ.)

4. Makovij K. A., Hickova YU.V., Gerus S.V. Ispol'zovanie metoda gibridnyh ocenok v oblasti informacionnyh tekhnologij. Nauchnyj vestnik Voronezhskogo gosudarstvennogo arhitekturno-stroitel'nogo universiteta. Seriya: Informacionnye tekhnologii v stroitel'nyh, social'nyh i ekonomicheskih sistemah. 2016;1(7):120–124. (In Russ.)

5. Solov'ev V. P., Udovichenko A. O. Metod planirovaniya razmeshcheniya gruppy virtual'nyh mashin s pereraspredeleniem resursov. Programmnye produkty i sistemy. 2012;1: 134-137. (In Russ.)

6. Beloglazov A., Buyya R. Optimal online deterministic algorithms and adaptive heuristics for energy and performance efficient dynamic consolidation of virtual machines in cloud data centers. Concurrency and Computation: Practice and Experience. 2012;24(13):1397–1420.

7. Lago D.G., Madeira E.R. M., Bittencourt L.F. Power-aware virtual machine scheduling on clouds using active cooling control and DVFS. In Proceedings of the 9th International Workshop on Middleware for Grids. Clouds and e-Science. 2011:1–6.

8. Shi L., Furlong J., Wang R. Empirical evaluation of vector bin packing algorithms for energy efficient data centers. In IEEE Symposium on Computers and Communications. 2013:9–15.

9. Calcavecchia N., Biran O., Hadad E., Moatti Y. VM placement strategies for cloud scenarios. In IEEE 5th International Conference on Cloud Computing. 2012:852–859.

10. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., & Buyya, R. CloudSim: a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms. Software: Practice and experience. 2011;41(1):23-50.

Metelkin Yaroslav Victorovich

ORCID | eLibrary |

Voronezh State Technical University

Voronezh, Russian Federation

Makoviy Katerina Aleksandrovna

ORCID | eLibrary |

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: cloud computing, virtualization, workload forecasting, cloudsim, datacenter, optimization

For citation: Metelkin Y.V., Makoviy K.A. Hardware resource use intellectualization of data centers providing cloud-computing services. Modeling, Optimization and Information Technology. 2021;9(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1008 DOI: 10.26102/2310-6018/2021.35.4.036 (In Russ).

394

Full text in PDF

Received 16.08.2021

Revised 21.12.2021

Accepted 26.12.2021

Published 31.12.2021