Моделирование и экспериментальная проверка процессов разделения биоклеток по величине магнитной восприимчивости
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Modeling and experimental verification of the biocell separation processes by the magnitude of magnetic susceptibility

Pavlov V.N.,  idKalaev V.N., idKornienko V.O., Legen'kij Y.A.,  idPreobrazhenskiy A.P., idL'vovich I.Y.

UDC 537.632/.636
DOI: 10.26102/2310-6018/2022.36.1.010

  • Abstract
  • List of references
  • About authors

In this article, suggestions are given for modeling the processes of cell separation by the magnitude of magnetic susceptibility. On the basis of the proposed model, an operating separation unit was created, and its description was given. To improve the efficiency of the operating separation unit, in comparison with existing equivalents, design solutions were introduced. It has been experimentally established that a lattice, consisting of rods of soft magnetic steel, which is a spatially periodic polygradient structure, can secrete cells of various magnetic susceptibility when the magnitude of the external magnetic field, applied to this structure, and the constant flow rate of the working medium, pumped through it, change. Additionally, we have also developed a technique for isolating cells with different magnetic susceptibility by means of the operating unit. The derived method makes it possible to acquire "spectra" of the magnetic susceptibility of cell samples. After the calibration of the unit, it is possible to predict the expected results of the cell separation analysis. The efficiency of the devised separator rises with an increase in the number of rows (rods) in the periodic structure. The accuracy of the findings depends on the pumping time. With weak fields, the shutter speed needs to be accelerated. Non-magnetic or weakly magnetic biological cells may remain in the swirl zones. This phenomenon negatively affects the quality of the samples obtained, especially with weak magnetic fields.

1. Bespalova S.V., Legen'kij Yu.A., Holyavka M.G., Solopov M.V. Inversiya saharozy i biosorbciya ionov Cu2+ magnitomarkirovannymi kletkami Saccharomyces serevisiae. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Himiya. Biologiya. Farmaciy = Proceedings of Voronezh State University. Series: Chemistry. Biology. Pharmacy. 2017;1:98–101. (In Russ.)

2. Turchin V.V., Lyogen'kij Yu.A., Solopov M.V., Bespalova S.V., Fistal' E.Ya. Magnitoforeticheskie svojstva fetal'nyh fibroblastov cheloveka, markirovannyh superparamagnitnymi nanochasticami oksida zheleza, stabilizirovannymi citratom. Nauchno-prakticheskij zhurnal «Geny & Kletki» = Scientific and practical journal «Genes & Cells». 2017;XII(1):47–53. (In Russ.)

3. Kornienko V.O., Kol'chenko O.R., Yaickij A.S. Vliyanie nanochastic Fe3O4 na ontogenez i morfometricheskie pokazateli kukuruzy saharnoj (Zea mays L.). Sovremennaya nauka: aktual'nye problemy teorii i praktiki. Seriya: Estestvennye i Tekhnicheskie Nauki = Scientific and practical journal «Modern Science: actual problems of theory and practice». 2020;08(2):30–36. (In Russ.)

4. Kornienko V.O. Vliyanie nanochastic Fe3O4 s razlichnymi tipami pokrytiya na rannie stadii razvitiya kukuruzy saharnoj (Zea mays L.). Problemy ekologii i ohrany prirody tekhnogennogo regiona = Problems of ecology and nature protection of technogenic region 2020;3-4:88–98. (In Russ.)

5. Legen'kij Yu.A., Solopov M.V. Vliyanie parametrov magnitomarkirovaniya na magnitoforez kletok Saccharomyces serevisiae. Vestnik Mezhdunarodnoj Akademii Nauk ekologii i bezopasnosti zhiznedeyatel'nosti. 2015;20(2):40–42. (In Russ.)

6. Dalili A., Samieib E., Hoorfar M. A review of sorting, separation and isolation of cells and microbeads for biomedical applications: microfluidic approaches. The Analyst. 2018;144:87–113.

7. Luo T., Fan, L., Zhu R., Sun D. Microfluidic Single-cell manipulation and analysis: methods and applications. Micromachines. 2019;10(104):1–31.

8. Pamme N., Wilhelm C. Continuous sorting of magnetic cells via on-chip free-flow. Lab Chip. 2006;6(8):974–980.

9. Svоbоdа J. Magnetic techniques for the treatment of materials. Kluwer academic publishers; 2004. P. 206–207.

10. Tsai H., Fang Y.S., Fuh C.B. Analytical and preparative applications of magnetic split-flow thin fractionation on several ion-labeled red blood cells. BioMagnetic Research and Technology. 2006;4(6):1–7.

11. Zagіrnyak M.V., Kondratenko І.P., Volkanіn Є.Є. Patent na korisnu model' № 88449, Ukraїna, MPK: A61K 9/51, B03C 1/025. Visokogradієntnij magnіtnij separator nanochastinok za frakcіyami. Patentovlasnik: Kremenchuc'kij nacіonal'nij unіversitet іmenі Mihajla Ostrograds'kogo; zayavl. 18.11.13; opubl. 11.03.14, Byul. No. 5. 7 p. (In Ukrain.)

12. Zagіrnyak M.V., Kondratenko І.P., Volkanіn Є.Є. Patent na korisnu model' № 88446, Ukraїna, MPK: V03S 1/32 (2006.01), A61K 9/51 (2006.01). Separator z magnіtnoyu sistemoyu Faradeya dlya rozdіlennya nanochastinok za frakcіyami. Patentovlasnik: Kremenchuc'kij nacіonal'nij unіversitet іmenі Mihajla Ostrograds'kogo; zayavl. 18.11.13; opubl. 11.03.14, Byul. No. 5. 4 p. (In Ukrain.)

13. Tolmachev S.T., Bondarevskij S.L. Deyakі pitannya polіgradієntnoї magnіtnoї separacії. Elektromekhanіchnі sistemi ta avtomatizacіya. 2012;1:31–36. (In Russ)

14. Kondratenko I.P., Nekrasov A.V., Volkanin E.E. Issledovanie magnitogidrodinamicheskogo separatora. Elektromekhanіchnі і energozberіgayuchі sistemi. 2011;1:107–109. (In Russ.)

15. Gorobec S.V. Gorobec O.YU. Mihajlenko N.A Dem'yanenko I.V. Patent na korisnu model' № 62963, Ukraїna, MPK: B03C 1/02 (2006.01) Frakcіonator. Patentovlasnik: Nacіonal'nij tekhnіchnij unіversitet Ukraїni «Kiїvs'kij polіtekhnіchnij іnstitut»; zayavl. 10.02.11; opubl. 26.09.11, Byul. No.18. 2 p. (In Ukrain.)

16. Frodsham G., Pankhurst Q.A. Biomedical applications of high gradient magnetic separation: progress towards therapeutic haeomofiltration. Biomed. Eng.-Biomed. Tech. 2015;60(5):393–404.

17. Moeser G.D., Roach K.A., Green W.H., Hatton T.A. High-gradient magnetic separation of coated magnetic nanoparticles. AIChE Journal. 2004;50(11):2835–2848.

18. Abidin, U., Majlis, B.Y., Yunas, J. Integrated high magnetic gradient system for trapping nanoparticles. Jurnal Teknologi. 2015;75(11):151–160.

19. Kirilenko A.V., Chekhun V.F., Podol'cev A.D., Kondratenko I.P., Kucheryavaya I.N., Bondar V.V., SHpilevaya S.I., Todor I.N. Analiz silovogo vozdejstviya vysokogradientnogo magnitnogo polya na magnitnye nanochasticy v potoke zhidkosti. Dopovidi Nacional'noї akademiї nauk Ukraїni = Reports of the National Academy of Sciences of Ukraine. 2010;9:162–172. (In Russ.)

Pavlov Vladimir Nikolaevich

Donetsk National University

Donetsk, Ukraine

Kalaev Vladislav Nikolaevich
Dr. Sci. (Biology), Full Professor
Email: Dr_Huixs@mail.ru

Scopus | ORCID | eLibrary |

Voronezh State University

Voronezh, Russian Federation

Kornienko Vladimir Olegovich

Email: kornienkovo@mail.ru

ORCID |

Donetsk National University

Donetsk, Ukraina

Legen'kij Yurij Anatol'evich

Donetsk National University

Donetsk, Ukraina

Preobrazhenskiy Andrey Petrovich
Dr. Sci.(Tech). (Phys&Math.), Ass. Professor.
Email: app@vivt.ru

ORCID |

Voronezh Institute of High Technologies

Voronezh, Russian Federation

L'vovich Igor Yakovlevich
Dr. Sci.(Tech), Full Professor
Email: office@vivt.ru

ORCID |

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Keywords: separator, magnetic field, biocells, magnetic susceptibility, high-gradient magnetic separation, method of biocell separation

For citation: Pavlov V.N., Kalaev V.N., Kornienko V.O., Legen'kij Y.A., Preobrazhenskiy A.P., L'vovich I.Y. Modeling and experimental verification of the biocell separation processes by the magnitude of magnetic susceptibility. Modeling, Optimization and Information Technology. 2022;10(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1067 DOI: 10.26102/2310-6018/2022.36.1.010 (In Russ).

479

Full text in PDF

Received 27.11.2021

Revised 04.02.2022

Accepted 25.02.2022

Published 31.03.2022