Keywords: mathematical modeling, differential equations, filtration, rigid filter partitions, solid particles, gas purification efficiency
Development of the filtration process mathematical model for purifying gas streams with perforated filter partitions
UDC УДК 517.9: :66.021.1
DOI: 10.26102/2310-6018/2021.35.4.033
In this article, an attempt is made to fill the gap in the filtering properties description of materials with a rigid layer structure, for example, perforated foil. A feature of the filtration process with such partitions is that the sediment layer is formed fairly quickly and only on the surface of the partition. Therefore, the properties of the partition are of secondary importance, and, thereafter, the main filter layer is the layer of deposited particles which thickness and porosity are continuously changing. The model is designed to predict the dynamics of changes in the concentration of solid particles in the gas stream at the outlet of the filter. In development of the model, assumptions were made about the duration constancy of the inter-regeneration period, the regeneration efficiency, the specific gas load and the input concentration of solid particles. Making a conclusion about the dominant role in the formation of the sieve effect sediment, the conditions and parameters of the dispersed phase particles capture mechanism were determined. Considering that the number and size of pores constantly change during the filtration process, the effective porosity parameter is introduced as a simplification, which allows to obtain a dependence for finding the concentration of solid particles at the outlet of the filter. Experiments have confirmed the accepted principles and the adequacy of the model. In the future, the presented model can be used to optimize the operation of existing filters using rigid porous partitions, as well as to develop new filter designs and their regeneration systems.
1. Mankov A.A., Krasovitskiy Yu.V., Stogney V.G., Troshchenko D.B., Arkhangelskaya E.V., Lobacheva N.N. Opredeleniye gidravlicheskogo soprotivleniya filtrovalnykh peregorodok tsilindricheskoy formy pri istechenii i zasasyvanii pylegazovogo potoka. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta VGTU = Bulletin of Voronezh State Technical University. 2008;4(3):18–20. (In Russ.)
2. Paymetov A.N., Panin A.I., Knyazkin S.V., Lushnikov A.A. Analiz ispolzovaniya tekstilnykh filtrov, primenyayemykh pri ochistke vozdukha ot pyli. Transportnoye delo Rossii = Transport business of Russia. 2014;4:32–34. (In Russ.)
3. Zykova Yu.A., Samokhvalov N.M., Vinogradov V.V. Soprotivleniye pylevogo osadka v shchelevom filtre. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov = Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2016;327(4):88–96. (In Russ.)
4. Romanyuk E.V., Krasovitskiy Yu.V., Smirnykh A.A., Chugunova I.A. Kombinirovannyye filtrovalnyye peregorodki dlya ochistki pylegazovykh potokov v proizvodstve ogneuporov. Novyye ogneupory = New refractories. 2014;7:57–61. (In Russ.)
5. Protsko D.S., Panov S.Yu., Khvostov A.A., Zhuravlev A.A., Semenikhin O.A. Gidrodinamicheskiye osobennosti perforirovannykh filtrovalnykh peregorodok. Nasosy. turbiny. sistemy = Pumps. Turbines. Systems. 2020;4:55–62. (In Russ.)
6. Panov S.Yu. Sovershenstvovaniye protsessa energosberegayushchey regeneratsii filtrov v sistemakh promyshlennogo pyleulavlivaniya. Dissertatsiya na soiskaniye uchenoy stepeni doktora tekhnicheskikh nauk. Voronezh: VGUIT; 2011. 325 p. (In Russ.)
7. Zimon A.D., Andrianov E.I. Autogeziya sypuchikh materialov. M.: Metallurgiya; 1978. 288 p. (In Russ.)
8. Saprykina A.V., Khaustov I.A., Shipilova E.A. Matematicheskiye modeli rascheta protsessa filtrovaniya gazovykh geterogennykh sistem dlya razlichnykh usloviy. Nauchnyy vestnik Voronezhskogo gosudarstvennogo arkhitekturno-stroitelnogo universiteta. Seriya: Informatsionnyye tekhnologii v stroitelnykh. sotsialnykh i ekonomicheskikh sistemakh = Scientific Bulletin of the Voronezh State University of Architecture and Civil Engineering. Series: Information technology in building, social and economic systems. 2016;1 (7):38–42. (In Russ.)
9. Bochkarev. V.V. Teoreticheskiye osnovy tekhnologicheskikh protsessov okhrany okruzhayushchey sredy. Tomsk: Izd-vo Tomskogo politekhnicheskogo universiteta; 2012. 318 p. (In Russ.)
10. Valdberg A.Yu., Isyanov L. M., Yalamov Yu.I. Teoreticheskiye osnovy okhrany atmosfernogo vozdukha ot zagryazneniya promyshlennymi aerozolyami. SPb.: MP «NIIOGAZ-Filtr»; 1993. 235 p. (In Russ.)
Keywords: mathematical modeling, differential equations, filtration, rigid filter partitions, solid particles, gas purification efficiency
For citation: Protsko D.S., Belykh O.M., Shipilova E.A., Panov S.Y. Development of the filtration process mathematical model for purifying gas streams with perforated filter partitions. Modeling, Optimization and Information Technology. 2021;9(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1083 DOI: 10.26102/2310-6018/2021.35.4.033 (In Russ).
Received 17.11.2021
Revised 23.12.2021
Accepted 30.12.2021
Published 31.12.2021