Keywords: ultrasound imaging, nonlinear parameter, second harmonic, nonlinear acoustics, structure of biological objects
The application of the relative acoustic nonlinear parameter for the development of biological tissue imaging systems
UDC 534.7
DOI: 10.26102/2310-6018/2022.36.1.021
The paper discusses the issues of developing a method for visualizing the internal structures of the body, based on the restoration of the acoustic nonlinear parameter distribution. The process of occurrence and propagation of the second harmonic wave in tissues with high nonlinearity and attenuation is considered. The use of the relative acoustic nonlinear parameter in relation to the absolute nonlinear parameter of the medium is proposed. To solve the problem of restoring the distribution of the relative acoustic nonlinear parameter in biological media, an equation is obtained that eliminates the necessity to measure changes in absolute pressure values for both the fundamental frequency wave and its second harmonic. Mathematical expressions are derived that enable accounting for the attenuation processes for the fundamental frequency and for its second harmonic, taking into consideration the influence of the medium in which the object under study is placed. Expressions for determining the relative acoustic nonlinear parameter are acquired. Drawing on these expressions, the construction of a visualization system, utilizing algorithms for restoring the distribution of the acoustic nonlinear parameter in the cross section of a biological object, is presented. The main advantage of these equations is that there is no need to identify changes in the absolute amplitudes of the fundamental frequency and second harmonic waves. The outlined methods for calculating the nonlinear characteristics of biological tissues make it possible to simplify the technical implementation of ultrasound imaging systems.
1. Chernov N.N., Zagray N.P., Laguta M.V., Varenikova A.Yu. Research of appearance and propagation of higher harmonics of acoustic signals in the nonlinear media. Journal of Physics: Conference Series. 2018;1015(3):032081. Available from: https://www.semanticscholar.org/paper/Research-of-Appearance-and-Propagation-of-Higher-of-Chernov-Laguta/2a55061f2cba7c29f74fff7272ed6a79c95b86a2 (accessed on 20.09.2021).
2. Korochentsev V.I., Koval T.V., Shabanov G.A., Rybchenko A.A., Volkov A.I., Karasev I.V. Problems of studying the effects of ultrasonic radiation on the human body. Izvestija JuFU. Tehnicheskie nauki. Razdel III. Akusticheskie metody i pribory v mediko-biologicheskoj praktike. 2012;3:211–214. (In Russ.)
3. Chernov N.N., Mikhaleva A.I., Zagrai N.P., Al-Samman A.H. Determination of elastic properties of biological layered media based on nonlinear interaction of acoustic waves. Inzhenernyj vestnik dona = Engineering Journal of Don. 2016;3. URL: ivdon.ru/ru/magazine/ archive/n3y2016/3735 (accessed on 15.06.2021). (In Russ.)
4. Chernov N.N., Zagrai N.P., Laguta M.V., Varenikova A.Yu. Numerical modeling of the field of secondary acoustic wave sources during passage through a biological medium. Modelirovanie, optimizacija i informacionnye tehnologii = Modeling, optimization, and information technology. 2018;6(3):40–49. (In Russ.)
5. Varenikova A.YU., CHernov N.N. Ustanovka dlya issledovaniya rasprostraneniya ul'trazvukovoj volny v biotkanyah s uchetom nelinejnosti sredy. Fundamental'nye issledovanija s primeneniem komp'juternyh tehnologij v nauke, proizvodstve, social'nyh i jekonomicheskih processah: materialy 18-oj Nacional'noj molodezhnoj nauchno-prakticheskoj konferencii. 2019:262–265. (In Russ.)
6. Romer A., Kim J., Qu J. et al. The Second Harmonic Generation in Reflection Mode: An Analytical, Numerical and Experimental Study. J Nondestruct Eval. 2016;35(6). DOI: 10.1007/s10921-015-0323-7.
7. Xiang Gao and Jianmin Qu. Acoustic nonlinearity parameter induced by extended dislocations. Journal of applied physics. 2018;124,125102:1-7. DOI:10.1063/1.5046640.
8. Gang Ren, Jongboem Kim, Kyung-Young Jhang. Relationship between second- and third-order acoustic nonlinear parameters in relative measurement. Ultrasonics. 2014;56:539–544. DOI:10.1016/j.ultras.2014.10.009.
9. Varray F., Pasovic M., Cachard C., Tortoli P. and O. Basset. Acoustic nonlinearity parameter of tissue on echo mode: Review and evaluation of the different approaches for B/A imaging. Proceedings – IEEE Ultrasonics Symposium. 2009:41–44. DOI:10.1109/ULTSYM.2009.5441529.
10. Wallace K.D., Lloyd C.W., Holland M.R., and Miller J.G. Finite Amplitude Measurements of the Nonlinear Parameter B/A for Liquid Mixtures Spanning a Range Relevant to Tissue Harmonic Mode. Ultrasound in medicine & biology. 2007;33:620–629. DOI:10.1016/j. ultrasmedbio.2006.10.008.
11. Pasovic M., Matte G., Van der Steen A.F.W., Basset O., Jong N. de, and Cachard C. Preliminary investigation of nonlinear dual frequency mixing technique for the estimation of the nonlinear paramter B/A. IEEE EMBC. 2007:2179–2182. DOI: 10.1109/IEMBS.2007.4352755.
12. Pantea C., Osterhoudt C.F. and Sinha D. N. Determination of acoustical nonlinear parameter 𝛽 of water using the finite amplitude method. Ultrasonics. 2013;53(5):1012–1019. DOI: 10.1016/j.ultras.2013.01.008.
13. Quan L., Qian F., Liu X., Gong X. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second harmonic sound wave. The Journal of the Acoustical Society of America. 2006;139:3373–3385. DOI: 10.1121/1.4949542.
14. Varenikova A. Yu. Application of dynamic characteristics of nonlinear interaction of acoustic waves for visualization of biotissues. Sbornik materialov Dvadcat' vtoroj Vserossijskoj nauchnoj konferencii studentov fizikov i molodyh uchenyh VNKSF-22. 2016;12:330-331. (In Russ.)
15. Tarantola A. Inverse Problem Theory and Methods for Model Parameter Estimation. Society for Industrial and Applied Mathematics. 2005;12. DOI: 10.1137 / 1.9780898717921.
16. Carlos Rus and Guillermo Rus. Logical Inference for Model-Based Reconstruction of Ultrasonic Nonlinearity. Mathematical Problems in Engineering. 2015;2015(3-4),162530:1–11. DOI:10.1155/2015/162530.
17. Quan L., Liu X. and Gong X. Quasi-phase matched backward secondharmonic generation by complementary media in nonlinear metamaterials. The Journal of the Acoustical Society of America. 2012;132:2852–2856. DOI:10.1121/1.4744978.
18. Burov V.A., Zotov D.I., Rumyantseva O.D. Restoration of spatial distributions of sound velocity and absorption in soft biotissue phantoms based on experimental data of ultrasound tomography. Akusticheskij Zhurnal = Acoustic journal. 2015;61(2):254–273.
19. David E. Goertz, Martijn E. Frijlink, Nico de Jong, Antonius F. W. van der Steen. Nonlinear Contrast Intravascular Ultrasound. Ultrasound and Carotid Bifurcation Atherosclerosis. Springer-Verlag London Limited. 2012;74234330:137–153. DOI: 10.1007/978-1-84882-688-5_8.
Keywords: ultrasound imaging, nonlinear parameter, second harmonic, nonlinear acoustics, structure of biological objects
For citation: Chernov N., Varenikova A., Laguta M. The application of the relative acoustic nonlinear parameter for the development of biological tissue imaging systems. Modeling, Optimization and Information Technology. 2022;10(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1111 DOI: 10.26102/2310-6018/2022.36.1.021 (In Russ).
Received 17.12.2021
Revised 31.01.2022
Accepted 14.03.2022
Published 31.03.2022