Keywords: knowledge assessment model, latent parameters, maximum likelihood method, variance analysis, correlation analysis, infit statistics, outfit statistics, coefficient of determination
Model with latent parameters for step-by-step procedure for evaluating learning outcomes
UDC 378
DOI: 10.26102/2310-6018/2022.36.1.015
The relevance of the research is due to the importance of studying learning outcomes to improve the quality of educational process. For this, a knowledge assessment model is proposed in the form of a task sequence. The probability of successful completion of the task depends on the latent parameters: the ability of the student and the difficulty of the task. The model is similar to the Partial Credit Model used in Item Response Theory to analyze test results. In reliance on the maximum likelihood method, a procedure has been developed for estimating parameters by numerical methods according to students' grades. The convergence of the estimation procedure has been substantiated. Adequacy verification of the model by the means of variance analysis, correlation analysis, Infit and Outfit criteria, based on the chi-square distribution, is put forward. To evaluate the usefulness of the model, it is suggested to utilize the coefficient of determination. Information on the application of the model for the analysis of students’ grade array in the academic group is given. Following on from the results of the analysis, the model passed the adequacy tests and made it possible to significantly clarify the characteristics of the learning outcomes and knowledge assessment procedures. To enhance the accuracy of modeling, it is recommended to employ grades of current academic performance. The practical value of the model lies in the identification of assessment procedures with characteristics that differ notably from the average for further meaningful analysis and upgrade.
1. Sosnickij V.N., Potanin N.I. Verojatnostnyj podhod k analizu uspevaemosti studentov. Fundamental'nye issledovanija = Fundamental research. 2014;8:734–738. (In Russ.)
2. Lebedeva T.V., Cypin A.P., Sidorenko V.S. Statisticheskij analiz faktorov, vlijajushhih na uspevaemost' studentov rossijskih vuzov. Intellekt. Innovacii. Investicii = Intellect. Innovation. Investments. 2016;9. URL: https://cyberleninka.ru/article/n/statisticheskiy-analiz-faktorov-vliyayuschih-na-uspevaemost-studentov-rossiyskih-vuzov (accessed on 29.08.2021). (In Russ.)
3. Galimova N.S., Zagitova L.R. Postroenie mnogofaktornoj modeli uspevaemosti studenta. Mezhdunarodnyj nauchno-issledovatel'skij zhurnal = International Research Journal. 2020;6-3(96). URL: https://cyberleninka.ru/article/n/postroenie-mnogofaktornoy-modeli-uspevaemosti-studenta (accessed on 29.08.2021). DOI: https://doi.org/10.23670/IRJ.2020.96.6.080. (In Russ.)
4. Rusakov S.V., Rusakova O.L., Posohina K.A. Nejrosetevaja model' prognozirovanija gruppy riska po uspevaemosti studentov pervogo kursa. Sovremennye informacionnye tehnologii i IT-obrazovanie = Modern Information Technologies and IT-Education. 2018;4. URL: https://cyberleninka.ru/article/n/neyrosetevaya-model-prognozirovaniya-gruppy-riska-po-uspevaemosti-studentov-pervogo-kursa (accessed on 29.08.2021). DOI: 10.25559/SITITO.14.201804.815-822. (In Russ.)
5. Kanapuhin P.A., Korotkih V.V., Shhekunskih S.S. Statisticheskij analiz faktorov akademicheskoj uspevaemosti (na primere obuchajushhihsja jekonomicheskogo fakul'teta FGBOU VO «VGU»). Vestnik Voronezhskogo gosudarstvennogo universiteta. Serija: Jekonomika i upravlenie = Proceedings of Voronezh St. Univ. Series: Economics and Management. 2020;2:27–44. DOI: 10.17308/econ.2020.2/2899. (In Russ.)
6. Grankov M.V., Al'-Gabri V.M., Gorlova M.Ju. Analiz i klasterizacija osnovnyh faktorov, vlijajushhih na uspevaemost' uchebnyh grupp vuza. Inzhenernyj vestnik Dona = Engineering Journal of Don. 2016;4(43). URL: https://cyberleninka.ru/article/n/analiz-i-klasterizatsiya-osnovnyh-faktorov-vliyayuschih-na-uspevaemost-uchebnyh-grupp-vuza (accessed on 29.08.2021). (In Russ.)
7. Bratishhenko V.V. Statisticheskij analiz jekzamenacionnyh ocenok. Baikal Research Journal. 2011;3. URL: https://cyberleninka.ru/article/n/statisticheskiy-analiz-ekzamenatsionnyh-otsenok (accessed on 19.12.2021). (In Russ.)
8. Shaforostova E.N., Lazareva T.I. Problemy vnedrenija informacionnoj sistemy kontrolja kachestva obuchenija studentov. Vestnik BGTU imeni V. G. Shuhova = The Bulletin of BSTU named after V.G. Shukhov. 2010;3. URL: https://cyberleninka.ru/article/n/problemy-vnedreniya-informatsionnoy-sistemy-kontrolya-kachestva-obucheniya-studentov (accessed on 30.08.2021). (In Russ.)
9. Nejman Ju.M., Hlebnikov V.A. Vvedenie v teoriju modelirovanija i parametrizacii pedagogicheskih testov. M.: Prometej; 2000. 168 s. (In Russ.)
10. Wright B.D., Masters G.N. Rating scale analysis: Rasch measurement. Chicago, Illinois: MESA Press; 1982. 223 p.
11. Bratishhenko V.V. Izmerenie sformirovannosti kompetencij studentov po dannym tekushhej uspevaemosti. Universitetskoe upravlenie: praktika i analiz = University Management: Practice and Analysis. 2019;23(3):69–78. DOI: https://doi.org/10.15826/umpa.20. (In Russ.)
Keywords: knowledge assessment model, latent parameters, maximum likelihood method, variance analysis, correlation analysis, infit statistics, outfit statistics, coefficient of determination
For citation: Bratischenko V.V. Model with latent parameters for step-by-step procedure for evaluating learning outcomes. Modeling, Optimization and Information Technology. 2022;10(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1118 DOI: 10.26102/2310-6018/2022.36.1.015 (In Russ).
Received 23.12.2021
Revised 20.01.2022
Accepted 18.02.2022
Published 31.03.2022