Обнаружение угроз безопасности информации с использованием глубоких нейронных сетей в компьютерных сетях в режиме реального времени
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Detection of information security threats using deep neural networks in computer networks in real time

idTrunov E.E., idKlyuev S.G.

UDC 004.855.5
DOI: 10.26102/2310-6018/2022.38.3.011

  • Abstract
  • List of references
  • About authors

Currently, the issue of detecting information security threats in computer networks is becoming a problem when it comes to preventing such threats in real time. The number of subscribers of almost any computer network is growing and so does the number of threats that can create a potential danger to the functioning of the network. In this regard, modern mechanisms that will help to respond to emerging information security threats in a timely manner are required. In this paper, the analysis of possible mechanisms of protection against security threats in computer networks is carried out and a methodology for implementing such protection using neural networks is proposed. In addition, a control example is implemented with a trained deep neural network which is able to detect information security threats with high accuracy and minimal delays. The materials of the article are of practical value when incorporating such a neural network into an intrusion detection system. By means of the method proposed in the article, it is possible to achieve a near-real-time response to information security threats and, as a result, prevent possible information security accidents.

1. Information protection. Basic terms and definitions: GOST R 50922-2006, instead of GOST R 50922-96. 2008. 5 p. Available by: http://www.consultant.ru (accessed on 10.03.2022). (In Russ.).

2. Demidov R.A. Identification of threats to information security violations in networks with dynamic topology using deep learning methods. Dissertation for the degree of Candidate of Technical Sciences. 2018. 143 p. (In Russ.).

3. Neural network. Online modeling. Available by: http://primat.org/demo/network/network.html#1 (accessed on 11.03.2022). (In Russ.).

4. Neural networks and Deep Learning, Chapter 1: Using neural networks to recognize handwritten digits. Available by: https://habr.com/ru/post/456738 (accessed on 13.03.2022). (In Russ.).

5. Vorobyev L.V. Information transmission systems and networks: a textbook for students of higher educational institutions. M.: Izdatel'skiy tsentr «Akademiya»; 2009. 336 p. (In Russ.).

6. Goldstein B.S. Communication networks: a textbook for students of higher educational institutions. SPb.: BKHV Sankt-Peterburg; 2010. 400 p. (In Russ.).

7. Information protection. Ensuring the security of telecommunication networks. General provisions: GOST R 52488-2005. 2007. 7 p. Available at: http://www.consultant.ru (accessed on 20.03.2022). (In Russ.).

8. Information protection. Vulnerabilities of information systems. Classification of information system vulnerabilities: GOST R 56546-2015. 2016:1-17. Available by: http://www.consultant.ru (accessed on 20.03.2022). (In Russ.).

9. Information technology. Methods and means of ensuring security. Criteria for assessing the security of information technologies. Part 1. Introduction and general model: GOST R ISO IEC 15408-1-2012 instead of GOST R ISO IEC 15408-2008. 2013. 56 p. Available by: http://www.consultant.ru (accessed on 20.03.2022). (In Russ.).

10. Krukhmalev V.V., Gordienko V.N. Fundamentals of building telecommunication systems and networks: a textbook for students of higher educational institutions. 2004. 510 p. (In Russ.).

11. Sokolov A.V. Information protection in distributed corporate networks and systems. 2002. 656 p. (In Russ.).

12. Neural network for detecting security threats. Available by: https://github.com/NikolaCloud/Neural.git (accessed on 17.05.2022). (In Russ.).

Trunov Evgeny Evgenievich

Email: ittehnology2018@gmail.com

ORCID |

Krasnodar Higher Military School

Krasnodar, Russian Federation

Klyuev Stanislav Gennadievich
Candidate of Technical Sciences, Associate Professor

ORCID | eLibrary |

Krasnodar Higher Military School

Krasnodar, Russian Federation

Keywords: computer network, neural network, security threat, deep learning, protection mechanism

For citation: Trunov E.E., Klyuev S.G. Detection of information security threats using deep neural networks in computer networks in real time. Modeling, Optimization and Information Technology. 2022;10(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1212 DOI: 10.26102/2310-6018/2022.38.3.011 (In Russ).

600

Full text in PDF

Received 09.07.2022

Revised 24.08.2022

Accepted 15.09.2022

Published 30.09.2022