Прогноз общей онкологической заболеваемости в регионах и муниципалитетах России на основе многофакторной модели
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

The forecast of cancer prevalence in the regions and municipalities of Russia based on a multivariate model

idStepanov V.S.

UDC [616-006.04:519.237.5](613.32:614.76)
DOI: 10.26102/2310-6018/2023.40.1.022

  • Abstract
  • List of references
  • About authors

The article considers the issue of the relationship between the cancer prevalence in some Russian regions and age composition along with a set of environmental and hygienic variables. The presence of the relationship between the prevalence of this pathology in the territory and the lag values of the variables are shown. The complex of factor explanatory variables contains an indicator of atmospheric air pollution in the settlements of the territory, a qualitative variable according to the degree of its technogenic pollution, the specific volume of polluted wastewater discharge, the concentration of benzo(a)pyrene, and the age composition. On this basis, an econometric model has been built that has a high statistical quality: the coefficient of determination is above 95 %, the approximation error is less than 3%. One of the factors was of the ordinal type; therefore, the result was a linear regression model with a variable structure containing two dummy variables. The model parameters were estimated by the least squares method using panel data with Russian regions for 2017-18. These data included observations on the populations of people with oncologic pathologies in the regions and factor variables. The presence of lags in the latter makes it possible to predict the number of people suffering from tumors of any localization with a planning horizon of 1 year. Such forecasts were carried out both at the level of regions and in the context of municipalities. Based on the resulting equation, one can make evidence-based managerial decisions aimed at canсer prevention in specific regions of Russia as well as to build agent-type simulation models.

1. Healthcare in Russia. Appendix to the collection (information in the context of the subjects of the Russian Federation). M: Rosstat; 2007–2021. Available from: https://rosstat.gov.ru/folder/210/document/13218 (accessed on 14.11.2022). (In Russ.).

2. Kaprin A.D., Aleksandrova L.M., Starinsky V.V. Malignancy prophylaxis in the Russian Federation as part of global strategy for the prevention of non-communicable diseases. Onkologiya. Zhurnal im. P.A. = P.A. Herzen Journal of Oncology. 2016;5(5):42–50. DOI: 10.17116/onkolog20165542-50. (In Russ.).

3. Domozhirova A.S. Complex health statistical prediction as a basis for the long-term planning of specialized cancer care in the areas of the Chelyabinsk Region. Onkologiya. Zhurnal im. P.A. = P.A. Herzen Journal of Oncology. 2016;5(1):47–50. DOI: 10.17116/onkolog20165147-50. (In Russ.).

4. Lazarev A.F., Petrova V.D., Terekhova S.A., Sinkina T.V. Multivariate statistical analysis when forming groups of high oncological risk. Byulleten' meditsinskoy nauki = Bulletin of Medical Science. 2017;1(5):37–43. DOI: 10.31684/2541-8475.2017.1(5).37-43. (In Russ.).

5. Choloyan S.B., Ekimov A.K., Baigazina E.N., Molodtsov N.S., Kalinina E.A., Posnov A.A. The use of modeling methods for solving problems of medical organization management. Review of Russian scientific publications. Menedzher Zdravoohranenia = Public Health Manager. 2021;7:11–24. DOI: 10.21045/1811-0185-2021-7-11-24. (In Russ.)

6. Feldblyum I.V., Alyeva M.H., Radionova M.V. Complex impact of medico-social and environmental risk factors on probability of colorectal canser development. Tikhookeanskiy meditsinskiy zhurnal = Pacific Medical Journal. 2018;3(73):24–28. (In Russ.). DOI: 10.17238/PmJ1609-1175.2018.3.24-28.

7. Borshchuk E.L., Boev V.M., Barkhatova L.A., Karpenko I.L., Kudusova L.Kh. Predictive model of canser morbidity of population under the influence of chemical carcinogen environment. Zdorov’ye naseleniya i sreda obitaniya = Public Health and Life Environment. 2017;1(286):13–16. DOI 10.35627/2219-5238/2017-286-1-13-16. (In Russ.).

8. Stepanov V.S. The relationship of cancer prevalence with age of the population living under adverse environmental factors. Vrach i informatsionnyye tekhnologii = Medical Doctor and Information Technology. 2021;3:38–49. DOI: 10.25881/18110193_2021_3_38. (In Russ.).

9. Golubkov A.V., Gavrilova M.P. Application of artificial neural networks in preventive and clinical medicine (review). Profilakticheskaya i klinicheskaya meditsina = Preventive and clinical medicine. 2020;4(77):30–39. (In Russ.). DOI: 10.47843/2074-9120_2020_4_30.

10. List of Classifications by cancer sites with sufficient or limited evidence in humans, IARC Monographs of the Identification of Carcinogenic Hazard to Humans. 1–131. Available from: https://monographs.iarc.fr/agents-classified-by-the-iarc (accessed on 14.10.2022).

11. Efimova N.V., Myl’nikova I.V. Assessment of the contribution made by oncogenic factors to the risk of malignant neoplasms development for the urban population of working age. Analiz riska zdorov'yu = Human Risk Analysis. 2021;3:99–107. DOI: 10.21668/health.risk/2021.3.09.eng.

12. Korsakov A.V., Domahina A.S., Troshin V.P., Geger E.V. Child and adult morbidity in the Bryansk Region by the level of radiatoactive, chemical and combined contamination: an ecological study. Ekologiya cheloveka = HumanEcology. 2020;7:4–14. DOI 10.33396/1728-0869-2020-7-4-14. (In Russ.).

13. Novikov S.М., Shashina Т.А., Dodina N.S., Кislitsyn V.А., Vorobiova L.М., Goryaev D.V., Tikhonova I.V., Kurkatov S.V. Comparative assessment of the multimedia canser health risks caused by contamination of the Krasnoyarsk Krai Regions’ environment. Gigiena i Sanitariya = Hygiene and Sanitation, Russian Journal. 2015;94(2):88–92 (In Russ.).

14. Radespiel-Troger M., Geiss K., Twardella D., Maier W., Meyer M. Cancer incidence in urban, rural, and densely populated districts close to core cities in Bavaria, Germany. International Archives of Occupational and Environmental Health. 2018;91:155–174. DOI: 10.1007/s00420-017-1266-3.

15. Сomprehensive monitoring of living conditions. M.: Rosstat, 2018. (In Russ.). Available from: https://gks.ru/free_doc/new_site/KOUZ18/index.html (accessed on 14.11.2022).

16. Ivanova A.E. Mortality forecast in Russia based on monitoring major social determinants. Social'nye aspekty zdorov'a naselenia = Social aspects of population health [serial online] 2020;66(6):6. DOI: 10.21045/2071-5021-2020-66-6-6. (In Russ.).

17. Sych G.V., Kosolapov V.P., Letnikova L.I., Shinkareva E.V., Sych A.V. Forecasting the development of tumors as one of the preventive measures of cancer incidence. Sistemnyy analiz i upravleniye v biomeditsinskikh sistemakh = System Analysis and Management in Biomedical Systems. 2018;17(3):802–807. (In Russ.).

18. Choporov O.N., Agarkov A.I., Klimenko G.J., Shurshukov Y.Y. Prediction oncological morbidity individual health and social risk factors. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, Optimization and Information Technology. 2013;3(3). (In Russ.).

19. Potylitsyna E.N., Taseiko O.V., Sugak E.V. Assessment of influence of air pollution produced by engineering enterprises on human health. Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akademika M.F. Reshetneva = The Journal “Vestnik of SibGAU”. 2015;16(4):958–969. (In Russ.).

20. Levshin V.F., Slepchenko N.I. Tobacco smoking and risk of developing malignant tumors and other chronic noncommunicable diseases. Onkologiya. Zhurnal im. P.A. Gertsena = P.A. Herzen Journal of Oncology. 2020;9(3):41–47. (In Russ.). DOI: 10.17116/onkolog2020903141.

21. Veremchuk L.V., Kiku P.F., Zhernovoi M.V. System modeling of ecological dependence in distribution of oncologic diseases within the Primorye Territories. Byulleten’ fiziologii i patologii dykhaniya = Bulletin Physiology and Pathology of Respiration. 2011;41:48–53. Available from: https://cfpd.elpub.ru/jour/article/view/411/389 (accessed on 01.12.2022). (In Russ.).

22. Regions of Russia. Socioeconomic indicators digest. M.: Rosstat; 2016–2021. Available from: https://rosstat.gov.ru/folder/210/document/13204 (accessed on 01.12.2022).

23. Database of indicators of municipalities. (In Russ.). Available from: https://Rosstat.gov.ru/storage/mediabank/munst.html (accessed on 14.11.2022).

24. Environmental protection in Russia. Appendix with information in the context of Russia’s Regions. M.: Rosstat, 2012–2022. Available from: https://gks.ru/bgd/regl/b20_54/Main.htm (accessed on 1.12.2022). (In Russ.).

25. Water resources and water management in Russia in 2017. M.: Nature; 2018. 230 p. (In Russ.).

26. Aleksandrov Y.A. Fundamentals of radiation ecology. Yoshkar-Ola: Izdatelstvo Mariyskogo gosuniversiteta; 2007. 268 p. (In Russ.).

27. Galiulin R.V., Galiulina R.A., Kochurov B.I. Technogenesis contamination of environment by cancerogenic substances. Teoreticheskaya i prikladnaya ekologiya = Theoretical and Applied Ecology. 2015;2:42–46. (In Russ.).

28. nformation on the results of monitoring benz[a]pyrene in the air of the Russian cities in 2015-2019. Obninsk: “Typhoon”. Available from: https://www.rpatyphoon.ru/products/pollution-media.php (accessed on 14.11.2022). (In Russ.).

29. Radioactive contamination of the territories of the constituent entities of the Russian Federation with cesium-137 (for the Ryazan Region). Federal Environmental Emergency Response Centre (FEERC). Available from: http://www.feerc.ru/Ru/pr1_13.htm (accessed on 14.11.2022). (In Russ.).

30. Korovina O.Y., Somin V.A. Environmental state of surface waters and bottom sediments in water bodies of the Southwestern part of the Altai Territory. NNC RK Bulletin. 2022;1:43–45. DOI: 10.52676/1729-7885-2022-1-43-45.

31. Carlberg C. Regression Analysis Microsoft Excel. USA; 2016.

32. Chernaya V.V., Voronin R.M., Suchkov I.A., Gornov V.A., Deryagina L.E. Monitoring of air and surface water pollution in the Ryazan Region. Ekologiya cheloveka = Human Ecology. 2021;8:28–5. (In Russ.). DOI: 10.33396/1728-0869-2021-8-28-35.

33. Yakovlev R.M., Obukhova I.A. Prospects for nuclear energetic in securing the energy and environmental safety of Russia. Biosfera. 2021;3(3):120–136. DOI: 10.24855/biosfera.v13i3.591. (In Russ.).

34. Levy D.T., Fouad H., Levy J., Dragomir A.D., Awa F.El. Application of the Abridged SimSmoke model to four Eastern Mediterranean countries. Tobacco Control. 2016;25(4):413–421. DOI: 10.1136/tobaccocontrol-2015-052334.

35. Environment and Health Information System. Available from: https://gateway.euro.who.int/ru/datasets/enhis/ (accessed on 11.09.2022).

36. GBD 2015 Tobacco Collaborators. Smoking prevalence and attributable disease burden in 195 countries and territories, 1990–2015: a systematic analysis from the Global Burden of Disease Study 2015. The Lancet. 2017;389(10082):1885–1906. DOI: 10.1016/S0140-6736(17)30819-X.

Stepanov Vladimir Sergeevich
Candidate of Physical and Mathematical Sciences

ORCID | eLibrary |

The Central Economics and Mathematics Institute of the Russian Academy of Sciences

Moscow, Russian Federation

Keywords: regression model, atmospheric air pollution, sewage pollution, benz(a)pyrene, technogenic pollution of the territory, smoking, malignant neoplasm, region, municipality

For citation: Stepanov V.S. The forecast of cancer prevalence in the regions and municipalities of Russia based on a multivariate model. Modeling, Optimization and Information Technology. 2023;11(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1286 DOI: 10.26102/2310-6018/2023.40.1.022 (In Russ).

416

Full text in PDF

Received 05.12.2022

Revised 01.02.2023

Accepted 10.03.2023

Published 31.03.2023