Приближенная оценка условий прекращения эпидемии компьютерного вируса в связных сетях, ассоциированных со случайными графами
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

An approximate evaluation of the conditions for the termination of a computer virus epidemic in connected networks associated with random graphs

idNikiforova A.Y.

UDC 004.942, 004.056
DOI: 10.26102/2310-6018/2023.43.4.034

  • Abstract
  • List of references
  • About authors

Mathematical modeling of computer virus epidemics is the most important area of theoretical research in the field of information security. This paper examines a Markov model of the computer virus spread based on the Reed–Frost model. The main aim of the article is to analyze the applicability of the modified Reed-Frost model to the class of networks associated with random Erdos-Renyi graphs. In particular, the effect of the ratio of the probability of cure to the probability of infection on stopping the spread of a computer virus was tested. The results of this model are compared with ones obtained via the simulation modeling for different values of epidemic parameters and network characteristics. In the calculations and experiments carried out, the following parameters changed: the probability of infection, the probability of cure, as well as the connectivity of the network. The Wolfram Mathematica symbolic computing system was used for calculations. A C++ program written earlier by the author and their supervisor was used to conduct the computational experiment. The studies show that, under certain parameters, the condition for ending the epidemic is confirmed by both theoretical calculations and experimental results. However, the epidemic vanishes before the threshold value calculated is reached. In the future, the author plans to give a more accurate theoretical assessment of the conditions for ending the epidemic.

1. Gippokrat. Selected books. Translated from the Greek professor V.I. Rudnev. Мoscow, Gos. izd-vo biol. i med. lit-ry; 1936. 736 p. (In Russ.).

2. Grigor'jan A.T., Kovaljov B.D. Daniil Bernulli, 1700—1782. Мoscow, Nauka=Nauka Publishers; 1981. 320 p. (In Russ.).

3. Kermack W.O., McKendrick A. G. Contributions to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character. 1927;772(115):700–721.

4. Abbey H. An examination of the Reed-Frost theory of epidemics. Human Biology. 1952;24(3):201–233.

5. Cohen F. Computer viruses: Theory and experiments. Computers & Security. 1987;6(1):22–35. DOI: 10.1016/0167-4048(87)90122-2.

6. Kephart J., White S. Directed-graph epidemiological models of computer viruses. Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. 1991;(May 20-22):343–359. DOI: 10.1142/9789812812438_0004.

7. Kephart J., White S. Measuring and modeling computer virus prevalence. Proceedings of the IEEE Computer Society Symposium on Research in Security and Privacy. 1993;(May 24-26):2–15. DOI: 10.1109/RISP.1993.287647.

8. Billings L., Spears W. M., Schwartz I. B. A unified prediction of computer virus spread in connected networks. Physics Letters A. 2002;297(3–4):261–266. DOI: 10.1016/S0375-9601(02)00152-4.

9. Van de Bovenkamp R., Van Mieghem P. Survival time of the susceptible-infected-susceptible infection process on a graph. Physical Review E. 2015;92(3):1–16. DOI: 10.1103/PhysRevE.92.032806.

10. Pastor-Satorras R., Castellano C., Van Mieghem P., Vespignani A. Epidemic processes in complex networks. Reviews of Modern Physics. 2015;87(3):925–978. DOI: 10.1103/RevModPhys.87.925.

11. Nikiforova A.Yu., Magazev A. A. On the probability of infection of a susceptible node for the reed-frost model. Prikladnaja matematika i fundamental'naja informatika=Applied Mathematics and fundamental Computer Science. 2020;7(4):34–41. DOI: 10.25206/2311-4908-2020-7-4-34-41. (In Russ.).

12. Bel'chenko A.O., Magazev A.A., Nikiforova A.Yu. An approximate evaluation of the infected nodes number fora markov model of viruses spreading. Matematicheskie struktury i modelirovanie=Mathematical Structures and Modeling. 2022;1(61):92–104. DOI: 10.24147/2222-8772.2022.1.92-104. (In Russ.).

13. Networks Repository. An Interactive Scientific Network Data Repository. URL: https://networkrepository.com (дата обращения: 20.11.2023).

14. Erdős P., Renyi A. On Random Graphs. Publicationes Mathematicae (Debrecen). 1959;6:290–297.

15. Magazev A.A., Nikiforova A.Yu. A program for estimating the average time of the spread of a computer virus in networks associated with random graphs: certificate of registration of an electronic resource. Мoscow, FIPS= Federal Institute of Industrial Property, 2023. No. 2023614819 от 06.03.2023. (In Russ.).

Nikiforova Angelina Yurievna

Email: skt-omgtu@mail.ru

ORCID | eLibrary |

Omsk State Technical University

Omsk, the Russian Federation

Keywords: computer virus, probability of infection, probability of cure, random graph, reed-Frost model, susceptible node

For citation: Nikiforova A.Y. An approximate evaluation of the conditions for the termination of a computer virus epidemic in connected networks associated with random graphs. Modeling, Optimization and Information Technology. 2023;11(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1483 DOI: 10.26102/2310-6018/2023.43.4.034 (In Russ).

214

Full text in PDF

Received 05.12.2023

Revised 18.12.2023

Accepted 28.12.2023

Published 31.12.2023