Моделирование рассеяния электромагнитных волн на структурах в виде куба
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Modeling the scattering of electromagnetic waves on structures in the form of a cube

Preobrazhensky A.P.,  Lvovich Y.E.,  Avetisyan T.V.,  Preobrazhensky Y.P. 

UDC 621.396
DOI: 10.26102/2310-6018/2024.46.3.006

  • Abstract
  • List of references
  • About authors

To date, among the various applied tasks in electrodynamics, it is possible to note the development of various approaches aimed at evaluating and studying the scattering characteristics of various electrodynamic objects. Among them, three-dimensional objects can be distinguished, which include flat surfaces and angular structures. Their contribution to the levels of electromagnetic fields in certain directions can be quite noticeable. In order to correctly solve the problem of scattering of electromagnetic wave scattering characteristics, it is necessary to rely on appropriate methods. At the same time, it is necessary to minimize possible errors, but the three-dimensional problem in question needs to be solved in a relatively short time. In this paper, the construction of a technique related to the determination of the scattering characteristics of a structure in the form of a cube is carried out. This is due to the fact that such structures are part of a large number of modern technical facilities, this must be taken into account during their design. To solve this problem, the method of integral equations was chosen. The results of the simulation are presented. A comparison with experimental data is carried out, and it is shown that the solution converges. A comparison with the characteristics of the Huygens cube is also carried out.

1. Gribkov A.S. et al. Radiolokatsionnye kharakteristiki ob"ektov: metody issledovaniya. Moscow: Radiotekhnika; 2015. 311 p. (In Russ.).

2. Gazizov T.R., Zabolotsky A.M., Kuksenko S.P., Komnatnov M.E., Surovtcev R.S. Simulation of Radioelectronic Equipment Elements: New Approaches, Models, and Algorithms, Their Implementation and Application. Nanoindustriya = Nanoindustry. 2020;13(S4):366–369. (In Russ.). https://doi.org/10.22184/1993-8578.2020.13.4s.366.369

3. Vesnik M.V. Physical Interpretation of a Mathematical Strict Solution for the Diffraction Problem by Means of Heuristic Formulas. Sovremennaya matematika. Fundamental'nye napravleniya = Contemporary Mathematics. Fundamental Directions. 2016;62:32–52. (In Russ.).

4. Vesnik M.V. Construction of heuristic diffraction coefficients in the analytical solutions to the problems in which wave fields of different physical nature are scattered by polygonal flat plates with complex boundary conditions. Journal of Communications Technology and Electronics. 2014;59(6):496–503. https://doi.org/10.1134/S106422691405009X

5. Klimenko Yu.A., Preobrazhenskiy A.P. The control challenges of complex electrodynamic object. Vestnik Voronezhskogo instituta vysokikh tekhnologii = Bulletin of the Voronezh Institute of High Technologies. 2022;16(3):9–12. (In Russ.).

6. Lvovich I.Ya., Lvovich Ya.E., Preobrazhensky A.P., Preobrazhensky Yu.P., Choporov O.N. Investigation of the characteristics of complex diffractive structures based on a combined approach. Ural Radio Engineering Journal. 2021;5(1):49–62. (In Russ.). https://doi.org/10.15826/urej.2021.5.1.004

7. L'vovich K.I. Nekotorye osobennosti luchevykh modelei v besprovodnykh sistemakh svyazi. In: Nauka molodykh – budushchee Rossii: Sbornik nauchnykh statei 7-i Mezhdunarodnoi nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh: Volume 4, 12-13 December 2022, Kursk, Russia. Kursk: Southwest State University; 2022. pp. 191–193. (In Russ.).

8. L'vovich K.I. O nekotorykh osobennostyakh proektirovaniya besprovodnykh sistem svyazi. In: Nauka molodykh – budushchee Rossii: Sbornik nauchnykh statei 7-i Mezhdunarodnoi nauchnoi konferentsii perspektivnykh razrabotok molodykh uchenykh: Volume 4, 12-13 December 2022, Kursk, Russia. Kursk: Southwest State University; 2022. pp. 188–191. (In Russ.).

9. L'vovich K.I., Plotnikov A.A. O problemakh obrabotki dannykh rasseyaniya ob"ektov. In: Molodezh' i sistemnaya modernizatsiya strany: Sbornik nauchnykh statei 7-i Mezhdunarodnoi nauchnoi konferentsii studentov i molodykh uchenykh: V 5-ti tomakh: Volume 3, 19-20 May 2022, Kursk, Russia. Kursk: Southwest State University; 2022. pp. 401–403. (In Russ.).

10. Penno R.P., Tillet G.A., Pasala K.M. Scattering on an ideally conducting cube. TIIER = TIYER. 1989;77(5):195–204. (In Russ.).

11. Godin A.S., Tsai A.B., Klimov K.N. Numerical electrodynamic analysis of the external Huygens cube. Journal of Communications Technology and Electronics. 2015;60(5):436–453. https://doi.org/10.1134/S1064226915050046

Preobrazhensky Andrey Petrovich
Doctor of Technical Sciences, Professor

Voronezh Institute of High Technologies

Voronez, Russian Federation

Lvovich Yakov Evseyevich
Doctor of Technical Sciences, Professor

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Avetisyan Tatiana Vladimirovna

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Preobrazhensky Yuri Petrovich
Candidate of Technical Sciences, Associate Professor

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Keywords: numerical simulation of scattering, diffraction of electromagnetic waves, cube structure, integral equation, huygens cube

For citation: Preobrazhensky A.P., Lvovich Y.E., Avetisyan T.V., Preobrazhensky Y.P. Modeling the scattering of electromagnetic waves on structures in the form of a cube. Modeling, Optimization and Information Technology. 2024;12(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1548 DOI: 10.26102/2310-6018/2024.46.3.006 (In Russ).

152

Full text in PDF

Received 03.06.2024

Revised 08.07.2024

Accepted 12.07.2024

Published 30.09.2024