Численный метод решения задачи рационального размещения технических средств организации дорожного движения
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Numerical method for solving the problem of rational location of technical means of traffic management

idArutiunian M.A.

UDC 656
DOI: 10.26102/2310-6018/2024.46.3.021

  • Abstract
  • List of references
  • About authors

The article presents one of the scientific results obtained by the author during his dissertation research  a combined numerical method for solving the problem of rational placement of technical means of traffic management, based on the use of the gradient descent method together with the Newton-Raphson method. One of the pressing problems of the development of a modern city is raised, which is the formation of a convenient and safe road and transport infrastructure. According to statistics, in the Russian Federation every year almost 20% of the total number of road accidents occur in collisions with pedestrians outside pedestrian crossings. As one of the solutions to the problem under consideration, it is proposed to install technical means of organizing traffic, in particular pedestrian crossings, on those streets on which they are either irrationally located or absent altogether. A mathematical model for the rational placement of technical means of traffic management has been developed and a numerical method for its solution has been proposed. It is noted that the combined numerical method proposed by the author allows one to quickly and accurately find the optimal parameters for the developed mathematical model, which helps to improve its performance and accuracy. It is generalized that the joint application of the considered numerical methods is a fairly effective way to solve the problem.

1. Arutiunian M.A. Development of an algorithmic apparatus for ensuring road safety. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2023;11(3). (In Russ.). https://doi.org/10.26102/2310-6018/2023.42.3.013

2. Arutiunian M.A. Mathematical model for estimating the probability of pedestrians crossing a street at some random location. Modelirovanie, optimizatsiya i informatsionnye tekhnologii = Modeling, Optimization and Information Technology. 2023;11(4). (In Russ.). https://doi.org/10.26102/2310-6018/2023.43.4.036

3. Ilyushin Yu.V., Pervukhin D.A., Klavdiev A.A., Afanaseva O.V., Kolesnichenko S.V. Designing of Distributed Control System with Pulse Control. Middle East Journal of Scientific Research. 2014;21(3):436–439.

4. Schapire R.E., Freund Y. Boosting: Foundations and Algorithms. Cambridge: The MIT Press; 2012. 526 p.

5. Friedman J.H. Greedy function approximation: A gradient boosting machine. The Annals of Statistics. 2001;29(5):1189–1232. https://doi.org/10.1214/aos/1013203451

6. Friedman J.H. Stochastic gradient boosting. Computational Statistics & Data Analysis. 2002;38(4):367–378. https://doi.org/10.1016/S0167-9473(01)00065-2

7. Chen T., Guestrin C. XGBoost: A Scalable Tree Boosting System. In: KDD '16: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 13–17 August 2016, San Francisco, California, USA. New York: Association for Computing Machinery; 2016. pp. 785–794. https://doi.org/10.1145/2939672.2939785

8. Chen T., Singh S., Taskar B., Guestrin C. Efficient second-order gradient boosting for conditional random fields. In: Proceeding of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS’15), 9–12 May 2015, San Diego, California, USA. 2015. pp. 147–155.

9. Nocedal J., Wright S.J. Numerical Optimization. New York: Springer; 2006. 664 p. https://doi.org/10.1007/978-0-387-40065-5

10. Ye J., Chow J.-H., Chen J., Zheng Z. Stochastic gradient boosted distributed decision trees. In: CIKM '09: Proceedings of the 18th ACM conference on Information and knowledge management, 2–6 November 2009, Hong Kong, China. New York: Association for Computing Machinery; 2009. pp. 2061–2064. https://doi.org/10.1145/1645953.1646301

Arutiunian Melania Andranikovna

Scopus | ORCID | eLibrary |

Admiral Makarov State University of Maritime and Inland Shipping

St. Petersburg, Russia

Keywords: numerical methods, gradient descent method, newton-Raphson method, technical means of traffic management, road safety

For citation: Arutiunian M.A. Numerical method for solving the problem of rational location of technical means of traffic management. Modeling, Optimization and Information Technology. 2024;12(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1556 DOI: 10.26102/2310-6018/2024.46.3.021 (In Russ).

101

Full text in PDF

Received 17.04.2024

Revised 03.09.2024

Accepted 05.09.2024

Published 30.09.2024