Алгоритмы для проведения компьютерного моделирования системы «расходомерная трубка – жидкость» кориолисова расходомера и обработки его результатов
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Algorithms for computer modeling of the “flow tube – liquid” system of a Coriolis flow meter and processing its results

idGudkova E.A., idTarantseva K.R.

UDC 004.942
DOI: 10.26102/2310-6018/2024.45.2.028

  • Abstract
  • List of references
  • About authors

Mathematical modeling of the «flow tube – liquid» system represents a current direction in engineering and scientific practice, since it allows optimizing the design of flow tubes, assessing the influence of various factors, such as pressure, temperature, viscosity and liquid composition on the operation of the system without the need for complex and expensive full-scale experiments. In this regard, this article is aimed at developing algorithms for implementing a mathematical model of the «flow tube – liquid» system of a Coriolis flow meter. The work synthesized an algorithm for developing a numerical model in the multiphysics modeling package COMSOL Multiphysics, which made it possible to increase the reliability of the simulation and reduce the complexity of creation and debugging through the use of the modular principle. A computational algorithm has been developed and a mathematical description of the calculation of the average time delay of signals from Coriolis flow meter sensors has been performed. The algorithm uses a linear interpolation method based on known data points obtained as a result of a computational experiment. An algorithm for running a program in Python using the Comsol API is proposed, which automates the processing of data arrays and the calculation of average time and phase delays. The algorithms are implemented using the UML language in the Enterprise Architect software product. The materials of the article are of practical value for specialists in the field of numerical modeling and optimization of Coriolis flow meter parameters.

1. Samarskii A.A., Mikhailov A.P. Matematicheskoe modelirovanie: Idei. Metody. Primery. Moscow: Fizmatlit; 2001. 320 p. (In Russ.).

2. Bobovnik G., Kutin J., Bajsić I. Estimation of velocity profile effects in the shell-type Coriolis flowmeter using CFD simulations. Flow Measurement and Instrumentation. 2005;16(6):365–373. https://doi.org/10.1016/j.flowmeasinst.2005.04.007.

3. Yaushev A.A., Taranenko P.A., Loginovskiy V.A. Study of the Oscillation Modes of a Coriolis Flowmeter Using a Parametric Finite Element Model, Verified by the Results of Modal Testing. Procedia Engineering. 2016;150:336–340. https://doi.org/10.1016/j.proeng.2016.07.027.

4. Hou G., Wang J., Layton A. Numerical Methods for Fluid-Structure Interaction – A Review. Communications in Computational Physics. 2012;12(2):337–377. https://doi.org/10.4208/cicp.291210.290411s.

5. Gudkova E.A., Tarantseva K.R., Mikheev M.YU. Comparative analysis of numerical and analytical methods for modeling the «flow tube – liquid» system in coriolis flowmeters. XXI vek: itogi proshlogo i problemy nastoyashchego plyus = XXI Century: Resumes of the Past and Challenges of the Present plus. 2022;11(3):57–63. (In Russ.). https://doi.org/10.46548/21vek-2022-1159-0009.

6. Ibryaeva O., Semenov A., Henry M. Measurement validation for ICPS: Matrix pencil method for coriolis metering with liquid/gas flow. In: 1st IEEE International Conference on Industrial Cyber-Physical Systems, ICPS 2018: Proceedings – 2018 IEEE Industrial Cyber-Physical Systems, ICPS 2018, 15-18 May 2018, Saint Petersburg, Russia. IEEE; 2018. P. 440–445. https://doi.org/10.1109/ICPHYS.2018.8390745.

7. Costa F.O., Pope J.G., Gillis K.A. Modeling Temperature Effects on a Coriolis Mass Flowmeter. Flow Measurement and Instrumentation. 2020;76. https://doi.org/10.1016/j.flowmeasinst.2020.101811.

8. Shavrina E., Nguyen V.-T., Yan Z., Khoo B.C. Fluid-Solid Interaction Simulation Methodology for Coriolis Flowmeter Operation Analysis. Sensors. 2021;21(23). https://doi.org/10.3390/s21238105.

9. Fedorova N.N., Val'ger S.A., Danilov M.N., Zakharova Yu.V. Osnovy raboty v ANSYS 17. Moscow: DMK Press; 2017. 210 p. (In Russ.).

10. Wang T., Baker R. Coriolis flowmeters: a review of developments over the past 20 years, and an assessment of the state of the art and likely future directions. Flow Measurement and Instrumentation. 2014;40:99–123. https://doi.org/10.1016/j.flowmeasinst.2014.08.015.

Gudkova Ekaterina Alexandrovna

Scopus | ORCID | eLibrary |

Penza State Technological University

Penza, Russian Federation

Tarantseva Klara Rustemovna
Doctor of Technical Sciences, Professor

WoS | Scopus | ORCID | eLibrary |

Penza State Technological University

Penza, Russian Federation

Keywords: «flow tube – liquid» system, coriolis flow meter, computer modeling, numerical model, computational experiment

For citation: Gudkova E.A., Tarantseva K.R. Algorithms for computer modeling of the “flow tube – liquid” system of a Coriolis flow meter and processing its results. Modeling, Optimization and Information Technology. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1560 DOI: 10.26102/2310-6018/2024.45.2.028 (In Russ).

194

Full text in PDF

Received 19.04.2024

Revised 03.05.2024

Accepted 07.05.2024

Published 30.06.2024