Визуальное и прогностическое моделирование заболеваемости артериальной гипертензией лиц старших возрастных групп и их диспансеризации
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Visual and predictive modeling of morbidity arterial hypertension in older age groups and their medical examination

idGafanovich E.J., Lomakov A.V.,  Lvovich A.I.,  idChoporov O.N.

UDC 681.3
DOI: 10.26102/2310-6018/2024.45.2.014

  • Abstract
  • List of references
  • About authors

The article discusses the use of the results of an analysis of the dynamics of morbidity indicators and clinical examination of the population of the region based on visual and prognostic modeling of long-term medical and statistical information. Arterial hypertension was chosen as a group of diseases. Medical statistics data from the Voronezh region for 2013-2022 were used. It is proposed to carry out visual modeling of time series characterizing the dynamics of morbidity and clinical examination indicators, based on the analysis of their graphical representation and the use of human visual-figurative intuition mechanisms when comparing visualization results. Visual modeling made it possible to characterize the trend in the annual increase in the incidence of hypertension in the adult population of the Voronezh region and to establish important information for decision-making by healthcare authorities about periods of decreasing incidence growth rates. Another important assessment for government authorities is the adequacy of the clinical examination process to trends in the dynamics of morbidity, which is established by comparing visualization results and is determined by coinciding changes in the graphical presentation of time series of relevant indicators. To use the results of predictive modeling, first of all, a number of methods are compared in terms of the root mean square error of forecasting the dynamics of time series: autoregressive integrated moving average, simple exponential smoothing, linear Holt method, triple exponential smoothing. It is concluded that the first method shows the best result, and the forecast estimates confirm the results of visual analysis. These estimates guide healthcare authorities to maintain the growth rate of resources allocated for medical examinations in the region in future periods.

1. Esaulenko I.E. et al. Biomedkibernetika. Voronezh: Istoki; 2014. 477 p. (In Russ.).

2. Sadykov S.S., Belyakova A.S. Mathematical Models of Some Cardiovascular Diseases. Informatsionnye tekhnologii = Information Technologies. 2011;(12):59–63. (In Russ.).

3. Glushanko V.S., Timofeeva A.P., Gerberg A.A. Metodika izucheniya urovnya, chastoty, struktury i dinamiki zabolevaemosti i invalidnosti. Mediko-reabilitatsionnye meropriyatiya i ikh sostavlyayushchie. Vitebsk: VSMU; 2016. 177 p. (In Russ.).

4. Kalinina A.M., Shal'nova S.A., Gambaryan M.G., Eganyan R.A., Muromtseva G.A., Bochkareva E.V., Kim I.V. Epidemiologicheskie metody vyyavleniya osnovnykh khronicheskikh neinfektsionnykh zabolevanii i faktorov riska pri massovykh obsledovaniyakh naseleniya. Moscow: National Medical Research Center for Therapy and Preventive Medicine; 2015. 96 p. (In Russ.).

5. Bazaleva O.I. Masterstvo vizualizatsii dannykh. Saint Petersburg: Dialektika; 2020. 192 p. (In Russ.).

6. Paklin N.B., Oreshkov V.I. Biznes-analitika: ot dannykh k znaniyam. Saint Petersburg: Piter Publishing House; 2013. 704 p. (In Russ.).

7. Kryuchin O.V., Kozadaev A.S., Dudakov V.P. Prognozirovanie vremennykh ryadov s pomoshch'yu iskusstvennykh neironnykh setei i regressionnykh modelei na primere prognozirovaniya kotirovok valyutnykh par. Issledovano v Rossii. 2010;(30):354–362. (In Russ.).

8. Slobodenyuk A.V., Kosova A.A., An R.N. Epidemiologicheskii analiz. Yekaterinburg: Ural State Medical University; 2015. 36 p. (In Russ.).

9. Drapkina O.M., Drozdova L.Yu., Kalinina A.M. et al. Organizatsiya provedeniya profilakticheskogo meditsinskogo osmotra i dispanserizatsii opredelennykh grupp vzroslogo naseleniya. Moscow: National Medical Research Center for Therapy and Preventive Medicine; 2020. 232 p. (In Russ.).

10. Gorshkova L.V. Problems of assessing the health care costs effectiveness. Servis v Rossii i za rubezhom = Services in Russia and Abroad. 2017;11(6):137–151. (In Russ.).

11. Klimov A.V., Denisov E.N., Ivanova O.V. Arterial'naya gipertenziya i ee rasprostranennost' sredi naseleniya. Molodoi uchenyi. 2018;(50):86–90. (In Russ.).

12. Lapteva E.S., Ar'ev A.L., Petrova V.B., Petrova A.I. Geriatricheskaya kardiologiya. Moscow: GEOTAR-Media; 2022. 192 p. (In Russ.). https://doi.org/10.33029/9704-6487-8-KLA-2022-1-192

Gafanovich Elena Jakovlevna
PhD

ORCID | eLibrary |

Saratov State Medical University n.a. V.I.Rasumoskiy of Ministry of health

Saratov, the Russian Federation

Lomakov Andrew Vladimirovich

eLibrary |

Voronezh Institute of High Technologies

Voronezh, the Russian Federation

Lvovich Artem Igorevich

eLibrary |

Voronezh Institute of High Technologies

Voronezh, the Russian Federation

Choporov Oleg Nikolaevich
Doctor of Technical Sciences, Professor

WoS | Scopus | ORCID | eLibrary |

Voronezh State Medical University named after N.N. Burdenko

Voronezh, the Russian Federation

Keywords: medical and statistical information, morbidity, medical examinations, data visualization, predictive modeling, resource management

For citation: Gafanovich E.J., Lomakov A.V., Lvovich A.I., Choporov O.N. Visual and predictive modeling of morbidity arterial hypertension in older age groups and their medical examination. Modeling, Optimization and Information Technology. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1565 DOI: 10.26102/2310-6018/2024.45.2.014 (In Russ).

162

Full text in PDF

Received 26.04.2024

Revised 13.05.2024

Accepted 14.05.2024

Published 30.06.2024