Прогнозирование депрессии на основе пользовательских данных русскоязычной социальной сети
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Forecasting the depression with user data from Russian-language social network

idSolokhov T.D., idKochkarov A.A.

UDC 519-6;519-8
DOI: 10.26102/2310-6018/2024.45.2.016

  • Abstract
  • List of references
  • About authors

The article explores the possibilities of applying semantic analysis of user posts on the social network VKontakte for monitoring and predicting depression. It emphasizes the seriousness of the depression issue, its negative impact on health and society, and the relevance of early diagnosis and assistance. The study also justifies the necessity and prospects of analyzing data from Russian-language social networks to prevent the development of depression among users. The article examines the analysis of textual data and the use of logistic regression to classify users based on the presence of depression. The study's results show high model accuracy using logistic regression, demonstrating the potential for automating the processes of identifying and supporting users suffering from depression in the online environment based on user information from social networks. The significance of this method is also highlighted, along with its practical usefulness for personalized interventions, its advantages, and its development prospects, including the use of neural network methods and the analysis of data dynamics. Despite the results achieved, there is a need for further work on the model, including the study of other machine learning methods and taking into account changes in the user’s mental state over time. The development of depression prediction methods based on social network data, as proposed in the article, is an important direction that can make a significant contribution to psychology, healthcare, and information technology.

1. Tarabakina L.V. Emotsional'noe zdorov'e podrostka: riski i vozmozhnosti. Moscow: Moscow Pedagogical State University; 2017. 194 p. (In Russ.).

2. Richter T., Richter-Levin G., Okon-Singer H., Fishbain B. Machine Learning-Based Behavioral Diagnostic Tools for Depression: Advances, Challenges, and Future Directions. Journal of Personalized Medicine. 2021;11(10). https://doi.org/10.3390/jpm11100957

3. Rajkomar A., Oren E., Chen K. et al. Scalable and accurate deep learning with electronic health records. npj Digital Medicine. 2018;1(1). https://doi.org/10.1038/s41746-018-0029-1

4. Branitskiy A.A., Sharma Y.D., Kotenko I.V., Fedorchenko E.V., Krasov A.V., Ushakov I.A. Determination of the mental state of users of the social network Reddit based on machine learning methods. Informatsionno-upravlyayushchie sistemy = Information and Control Systems. 2022;(1):8–18. (In Russ.). https://doi.org/10.31799/1684-8853-2022-1-8-18

5. Suhara Y., Xu Y., Pentland A.S. DeepMood: Forecasting Depressed Mood Based on Self-Reported Histories via Recurrent Neural Networks. In: WWW '17: Proceedings of the 26th International Conference on World Wide Web, 3-7 April 2017, Perth, Australia. Switzerland: International World Wide Web Conferences Steering Committee; 2017. P. 715–724. https://doi.org/10.1145/3038912.3052676

6. Kaplun I.G., Gerasimov P.E., Chuchin V.V., Klyushnikov N.V. Features of the communicative competence of students – active users of social networks. Skif. Voprosy studencheskoi nauki = Sciff. Questions of Students Science. 2022;(11):163–167. (In Russ.).

7. Govindasamy K.A., Palanichamy N. Depression Detection Using Machine Learning Techniques on Twitter Data. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), 6-8 May 2021, Madurai, India. IEEE; 2021. P. 960–966. https://doi.org/10.1109/ICICCS51141.2021.9432203

8. Ghosh S., Anwar T. Depression Intensity Estimation via Social Media: A Deep Learning Approach. IEEE Transactions on Computational Social Systems. 2021;8(6):1465–1474. https://doi.org/10.1109/TCSS.2021.3084154

9. Zogan H., Razzak I., Wang X. et al. Explainable depression detection with multi-aspect features using a hybrid deep learning model on social media. World Wide Web. 2022;25(1):281–304. https://doi.org/10.1007/s11280-021-00992-2

10. Shen G., Jia J., Nie L., Feng F., Zhang C., Hu T., Chua T.-S., Zhu W. Depression Detection via Harvesting Social Media: A Multimodal Dictionary Learning Solution. In: IJCAI'17: Proceedings of the 26th International Joint Conference on Artificial Intelligence, 19-25 August 2017, Melbourne, Australia. AAAI Press; 2017. P. 3838–3844. https://doi.org/10.24963/ijcai.2017/536

11. Uglova A.B., Nizomutdinov B.A. Analysis of the destructive content of telegram channels as a factor in the development of self-destructive behavior. International Journal of Open Information Technologies. 2022;10(11):81–86. (In Russ.).

12. Kovpak D.V. Cognitive behavioral therapy of suicidal behavior. Vestnik Moskovskoi mezhdunarodnoi akademii = Bulletin of the Moscow International Academy. 2021;(2):55–63. (In Russ.).

13. Latynov V.V., Ovsyannikova V.V. Predicting Psychological Characteristics from Digital Footprints. Psikhologiya. Zhurnal vysshei shkoly ekonomiki = Psychology. Journal of Higher School of Economics. 2020;17(1):166–180. (In Russ.). https://doi.org/10.17323/1813-8918-2020-1-166-180

Solokhov Timur Damirovich

Email: timurkass@list.ru

ORCID | eLibrary |

Financial University under the Government of the Russian Federation

Moscow, Russia

Kochkarov Azret Akhmatovich
PhD, docent

ORCID | eLibrary |

Financial University under the Government of the Russian Federation

Moscow, Russia

Keywords: forecasting, depression, psychological disorder, logistic regression, classification, social network, machine learning

For citation: Solokhov T.D., Kochkarov A.A. Forecasting the depression with user data from Russian-language social network. Modeling, Optimization and Information Technology. 2024;12(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1593 DOI: 10.26102/2310-6018/2024.45.2.016 (In Russ).

151

Full text in PDF

Received 31.05.2024

Revised 13.06.2024

Accepted 24.06.2024

Published 30.06.2024