Keywords: communication and computing systems, functional reliability, telecommunication systems, topology, routing, dynamic structure
Ensuring functional reliability of telecommunication systems based on topological resource
UDC 004.72
DOI: 10.26102/2310-6018/2024.46.3.024
Modern special-purpose communication and computing systems perform tasks, first of all, to deliver information between spatially distributed bodies involved in solving network-centric control problems. Modern communication and computing systems are characterized by a transition to a hybrid structure, a decentralized network architecture, which predetermines the formation of a single information space based on the integration of different departmental affiliations information systems, and created on the basis of various methodological and technological platforms. In this work, topological and resource approaches are used as approaches that allow us to study the properties of local information systems from a unified methodological position. The conceptual basis was the proposition that a promising approach to routing in conditions of dynamic changes in the state of a telecommunication system is the formation of a backup message delivery paths set, which will increase the reliability and stability of the system. The features of the backup paths formation are determined, limiting the possibility of mechanical transfer of backup methods developed for technical systems to the TCS area. A metric has been proposed that allows one to analyze possible paths for transmitting messages between the source node and the destination node based on a set of static and dynamic characteristics.
1. Antonovich P.I., Makarenko S.I., Mihaylov R.L., Ushanev K.V. New means of destructive effects on network centric military command, control and communication systems in the common information space. Vestnik akademii voennyh nauk. 2014;(3):93–101. (In Russ.).
2. Surma I.V., Annenkov V.I., Karpov V.V., Moiseev A.V. The "network-centric management": the modern paradigm of development of management systems in the military forces of the leading global powers. Natsional'naya bezopasnost' / nota bene = National Security. 2014;(2):317–327. (In Russ.). https://doi.org/10.7256/2073-8560.2014.2.11393
3. Allakin V.V. Tekhnologii i metriki podderzhaniya funktsional'noi bezopasnosti informatsionno-telekommunikatsionnoi seti obshchego naznacheniya. In: Problemy tekhnicheskogo obespecheniya voisk v sovremennykh usloviyakh: Trudy VI mezhvuzovskoi nauchno-prakticheskoi konferentsii, 02 May 2021, Saint Petersburg, Russia. Saint Petersburg: S.M. Budyonny Military Academy of the Signal Corps; 2021. pp. 491–496. (In Russ.).
4. Brown J.I., Kolokolnikov T., Kooij R.E. New approximations for network reliability. Networks. 2024;84(1):51–63. https://doi.org/10.1002/net.22215
5. Huang S., Mukherjee B. Adaptive Reliable Multi-Path Provisioning in WDM Mesh Networks. In: 2008 IEEE International Conference on Communications, 19–23 May 2008, Beijing, China. IEEE; 2008. pp. 5300–5304. https://doi.org/10.1109/ICC.2008.994
6. Crucitti P., Latora V., Marchiori M. Model for cascading failures in complex networks. Physical Review E. 2004;69(4). https://doi.org/10.1103/PhysRevE.69.045104
7. Peng R. Reliability of interdependent networks with cascading failures. Eksploatacja i Niezawodność – Maintenance and Reliability. 2018;20(2):273–277. https://doi.org/10.17531/ein.2018.2.13
8. Valdez L.D., Shekhtman L., La Rocca C.E., Zhang X., Buldyrev S.V., Trunfio P.A., Braunstein L.A., Havlin S. Cascading failures in complex networks. Journal of Complex Networks. 2020;8(2). https://doi.org/10.1093/comnet/cnaa013
9. Matsukawa T., Koshiji K., Tojo T. Network Reliability Design and Control Technology for Robust Networks. NTT Technical Review. 2023;21(12):27–32. https://doi.org/10.53829/ntr202312fa3
10. Moshnikov A. Evaluation of Network Reliability and Element Importance Metrics. In: 12th Majorov International Conference on Software Engineering and Computer Systems (MICSECS 2020): CEUR Workshop Proceedings, 10–11 December 2020, Online & Saint Petersburg, Russia. 2020. URL: https://ceur-ws.org/Vol-2893/paper_14.pdf
11. Timofeev A.V. Adaptivnoe upravlenie i intellektual'nyi analiz informatsionnykh potokov v komp'yuternykh setyakh. Saint Petersburg: Anatoliya; 2012. 280 p. (In Russ.).
12. Bogatyrev V.A. Informatsionnye sistemy i tekhnologii. Teoriya nadezhnosti. Moscow: Izdatel'stvo Yurait; 2024. 366 p. (In Russ.).
13. Harary F. Graph theory. Moscow: Mir; 1973. 300 p. (In Russ.).
14. Tsvetcov K.U., Makarenko S.I., Mikhailov R.L. Forming Reserve Paths Based on Dijkstra Algorithm in Order to Enhance Stability of Telecommunication Networks. Informatsionno-upravlyayushchie sistemy = Information and Control Systems. 2014;(2):71–78. (In Russ.).
15. Makarenko S.I., Kvasov M.N. Modified Bellman-Ford algorithm with forming the shortest and fallback paths and its application for telecommunication network stability improvement. Infokommunikacionnye tehnologii. 2016;14(3):264–274. (In Russ.).
16. Gvozdev V.E., Guzairov M.B., Davlieva A.S., Galimov R.R. Evaluation of MANET information safety characteristics based on the analysis of link topologies. Doklady Tomskogo gosudarstvennogo universiteta sistem upravleniya i radioelektroniki = Proceedings of the TUSUR University. 2023;26(4):35–43. (In Russ.). http://doi.org/10.21293/1818-0442-2023-26-4-35-43
17. Makarenko S.I. Stability method of telecommunication network with using topological redundancy. Sistemy upravleniya, svyazi i bezopasnosti = Systems of Control, Communication and Security. 2018;(3):14–30. (In Russ.).
18. Das A., Martel C., Mukherjee B., Rai S. New Approach to Reliable Multipath Provisioning. Journal of Optical Communications and Networking. 2011;3(1):95–103. https://doi.org/10.1364/JOCN.3.000095
19. Lee K., Lee H.-W., Modiano E. Reliability in Layered Networks With Random Link Failures. IEEE/ACM Transactions on Networking. 2011;19(6):1835–1848. https://doi.org/10.1109/TNET.2011.214342
20. Chernorutskii I.G. Metody optimizatsii i prinyatiya reshenii. Saint Petersburg: Lan Publishing House; 2001. 384 p. (In Russ.).
21. Busacker R., Saaty T. Finite Graphs and Networks: An Introduction with Applications. Moscow: Glavnaya redaktsiya fiziko-matematicheskoi literatury izdatel'stva "Nauka"; 1973. 363 p. (In Russ.).
22. Braun W. The system archetypes. The Systems Modeling Workbook. 2002;1–26.
Keywords: communication and computing systems, functional reliability, telecommunication systems, topology, routing, dynamic structure
For citation: Gvozdev V.E., Guzairov M.B., Rakipova A.S., Galimov R.R., Prykhodko V.E., Teplyashyn P.N. Ensuring functional reliability of telecommunication systems based on topological resource. Modeling, Optimization and Information Technology. 2024;12(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1647 DOI: 10.26102/2310-6018/2024.46.3.024 (In Russ).
Received 26.08.2024
Revised 10.09.2024
Accepted 16.09.2024
Published 30.09.2024