Влияние версии библиотеки TensorFlow на качество генерации кода по изображению
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Influence of the TensorFlow library’s version on the quality of code generation from an image

Nikitin I.V. 

UDC 004.832.22
DOI: 10.26102/2310-6018/2024.47.4.040

  • Abstract
  • List of references
  • About authors

This study compares the efficiency of training models that implement two different approaches: complicating the original neural network architecture, or maintaining the architecture while improving the tools used in the training framework. Attempts to complicate the architecture of the solution for generating source code based on an image lead to solutions that might be difficult to support in the future. At the same time, such improvements do not use more modern tools and libraries that such systems are built upon. The relevance of the study is due to the lack of attempts to use more modern and relevant libraries. In this regard, during the experiment to compare the indicators of models of three versions of image-based source code generation systems: the original pix2code system, its complex version, and the version with a modern version of the TensorFlow library - in the process of their training, it was revealed that approaches with a complex architecture and the current TensorFlow have the same indicators, higher quality than the original pix2code. Based on the experiment, we can conclude that updating the TensorFlow library can provide an additional increase in the quality of results that the image-based source code generation system can predict.

Keywords: code generation, image, machine learning, tensorFlow, keras, domain-specific language

For citation: Nikitin I.V. Influence of the TensorFlow library’s version on the quality of code generation from an image. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1754 DOI: 10.26102/2310-6018/2024.47.4.040 (In Russ).

177

Full text in PDF

Received 26.11.2024

Revised 19.12.2024

Accepted 24.12.2024

Published 31.12.2024