О децентрализованном решении задачи одновременного прибытия автономных мобильных объектов к финальной точке с использованием анализа больших данных
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

About a decentralized solution to the problem of simultaneous arrival of autonomous mobile objects to the final point using large data analysis

Chernoivanenko I.A.,  idKravets O.Y.

UDC 004.7
DOI: 10.26102/2310-6018/2024.43.4.036

  • Abstract
  • List of references
  • About authors

The need to switch to more advanced control methods when using a conventional autonomous mobile facility (AMO) to control simultaneous arrivals arises due to excessive deviation. An innovative solution to this problem is the use of a decentralized management method to control the simultaneous arrival of the AMO to the final point, which is based on the analysis of big data. A solution was proposed to combine decentralized information through the use of filtering, on the basis of which the decentralized coordination of formations is managed. The article presents the main characteristics of AMO, shows the parameters of combining information about AMO, describes decentralized coordination management of formation and calculates the optimal path and convergence rate for decentralized management, and also takes into account restrictions on communication delay. An experimental study of errors in the x direction by the proposed method was carried out and compared with errors in the experiment without using this control method. Graphs comparing the convergence rate are also presented. The results of the experiment showed that the decentralized management method has a significant impact on the definition of the aim of AMO and the convergence of errors. Thanks to the proposed approach, it was possible to increase the efficiency of management and reduce errors, thereby proving the expediency of using this management method.

1. Tyushev K., Amelin K., Andrievsky B. The method of saving data integrity for decentralized network of group of UAV using quantized gossip algorithms. IFAC-PapersOnLine. 2016;49(13):259–264. https://doi.org/10.1016/j.ifacol.2016.07.961

2. Dai B., He Y., Zhang G., Gu F., Yang L., Xu W. Wind disturbance rejection for unmanned aerial vehicles using acceleration feedback enhanced H_(∞) method. Autonomous Robots. 2020;44(7):1271–1285. https://doi.org/10.1007/s10514-020-09935-8

3. Arbanas B., Ivanovic A., Car M., Orsag M., Petrovic T., Bogdan S. Decentralized planning and control for UAV–UGV cooperative teams. Autonomous Robots. 2018;42(8):1601–1618. https://doi.org/10.1007/s10514-018-9712-y

4. Meng W., He Z., Su R., Yadav P.K., Teo R., Xie L. Decentralized Multi-UAV Flight Autonomy for Moving Convoys Search and Track. IEEE Transactions on Control Systems Technology. 2017;25(4):1480–1487. https://doi.org/10.1109/TCST.2016.2601287

5. Conesa A., Madrigal P., Tarazona S., Gomez-Cabrero D., Cervera A., McPherson A., Szcześniak M.W., Gaffney D.J., Elo L.L., Zhang X., Mortazavi A. A survey of best practices for RNA-seq data analysis. Genome Biology. 2016;17. https://doi.org/10.1186/s13059-016-0881-8

6. Liu S., Bai W., Zeng N., Wang S. A Fast Fractal Based Compression for MRI Images. IEEE Access. 2019;7:62412–62420. https://doi.org/10.1109/ACCESS.2019.2916934

7. Stergiopoulos G., Kotzanikolaou P., Theocharidou M., Lykou G., Gritzalis D. Time-based critical infrastructure dependency analysis for large-scale and cross-sectoral failures. International Journal of Critical Infrastructure Protection. 2016;12:46–60. https://doi.org/10.1016/j.ijcip.2015.12.002

8. Liu S., Fu W., He L., Zhou J., Ma M. Distribution of primary additional errors in fractal encoding method. Multimedia Tools and Applications. 2014;76(4):5787–5802. https://doi.org/10.1007/s11042-014-2408-1

9. Cheng Y.-C., Wu E.H., Chen G.-H. A Decentralized MAC Protocol for Unfairness Problems in Coexistent Heterogeneous Cognitive Radio Networks Scenarios With Collision-Based Primary Users. IEEE Systems Journal. 2016;10(1):346–357. https://doi.org/10.1109/jsyst.2015.2431715

10. Kamath G., Shi L., Song W.-Z., Lees J. Distributed travel-time seismic tomography in large-scale sensor networks. Journal of Parallel and Distributed Computing. 2016;89:50–64. https://doi.org/10.1016/j.jpdc.2015.12.002

Chernoivanenko Igor Alexandrovich

eLibrary |

Voronezh State Technical University

Voronezh, Russian Federation

Kravets Oleg Yakovlevich
Doctor of Technical Sciences, Professor

ORCID | eLibrary |

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: large data analysis, autonomous mobile objects, decentralized management, information filtering, coordination management of formation

For citation: Chernoivanenko I.A., Kravets O.Y. About a decentralized solution to the problem of simultaneous arrival of autonomous mobile objects to the final point using large data analysis. Modeling, Optimization and Information Technology. 2024;12(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1768 DOI: 10.26102/2310-6018/2024.43.4.036 .

71

Full text in PDF

Received 10.12.2024

Revised 19.12.2024

Accepted 20.12.2024

Published 31.12.2024