Роль алгоритмов машинного обучения в оптимизации сельскохозяйственного производства: обзор международного опыта и адаптация к условиям Эфиопии
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

The role of machine learning algorithms in optimizing agricultural production: a review of international experience and adaptation to Ethiopian conditions

idMekecha B., idGorbatov A.V.

UDC 004.89
DOI: 10.26102/2310-6018/2025.48.1.005

  • Abstract
  • List of references
  • About authors

The relevance of this study is driven by the need to enhance the efficiency of agricultural production in response to the growing demand for food security, particularly in economically underdeveloped countries such as Ethiopia. The main objective of the research is to explore the potential application of machine learning algorithms to optimize agricultural processes and adapt international practices to the specific conditions of Ethiopia. The methodological approach includes an analysis of contemporary scientific literature on the use of machine learning in agriculture and the systematization of successful practices involving algorithms such as CNN, LSTM, RNN, and Q-Learning. The study investigates the characteristics of Ethiopia's agricultural sector, including existing barriers to the adoption of advanced technologies. The results highlight that machine learning algorithms hold significant potential for increasing crop yields, improving soil and crop monitoring, and forecasting climate risks. Specifically, utilizing data from drones and sensors enables the creation of precise models for managing agricultural processes. However, key challenges such as insufficient funding, a lack of specialized data processing infrastructure, and limited access to technology have been identified. The study concludes by emphasizing the importance of attracting governmental and international investments, developing tailored databases, and creating models that account for local conditions. The findings provide practical value for developing strategies to digitize agriculture and prevent food crises in countries facing similar challenges.

1. Alyokhina E.S. Development of professional competencies personnel in agriculture and its impact on increasing quality and performance. Science Bulletin. 2023;1(12):32–42. (In Russ.).

2. Rusakova K.A. Technologies of AI, Machine Learning and Data Processing in Agriculture. In: Belarus' v sovremennom mire: Materialy XVII Mezhdunarodnaya nauchnaya konferentsiya studentov, magistrantov, aspirantov i molodykh uchenykh: Part 1, 23–24 May 2024, Gomel, Belarus. Gomel: Sukhoi State Technical University of Gomel; 2024. pp. 143–146. (In Russ.).

3. Haldurdyeva M., Movlamova L., Taylakova A., Annaev M. Impact of digitization on the efficiency of the agricultural industrial complex. Ceteris Paribus. 2024;(5):49–52. (In Russ.).

4. Ronzhin A.L., Savel'ev A.I. Artificial Intelligence Systems for Solving Problems of Agro-Industrial Complex Digitalization and Robotization. Agricultural Machinery and Technologies. 2022;16(2):22–29. (In Russ.). https://doi.org/10.22314/2073-7599-2022-16-2-22-29

5. Goncharova Ya.V., Pankov V.V. Sushchestvuyushchie aspekty vnedreniya mashinnogo obucheniya v agropromyshlennykh kompleksakh. In: Innovatsionnye tekhnologii i tekhnicheskie sredstva dlya APK, 11–12 November 2021, Voronezh, Russia. Voronezh: Voronezh State Agrarian University named after Emperor Peter the Great; 2021. pp. 223–227. (In Russ.).

6. Koshkarov A.V. Machine learning methods in digital agriculture: algorithms and cases. International Journal of Advanced Studies. 2018;8(1):11–26. https://doi.org/10.12731/2227-930X-2018-1-11-26

7. Archana S., Kumar P.S. A Survey on Deep Learning Based Crop Yield Prediction. Nature Environment and Pollution Technology. 2023;22(2):579–592. https://doi.org/10.46488/NEPT.2023.v22i02.004

8. Benos L., Tagarakis A.C., Dolias G., Berruto R., Kateris D., Bochtis D. Machine Learning in Agriculture: A Comprehensive Updated Review. Sensors. 2021;21(11). https://doi.org/10.3390/s21113758

9. Van Klompenburg T., Kassahun A., Catal C. Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture. 2020;177. https://doi.org/10.1016/j.compag.2020.105709

10. Liakos K.G., Busato P., Moshou D., Pearson S., Bochtis D. Machine Learning in Agriculture: A Review. Sensors. 2018;18(8). https://doi.org/10.3390/s18082674

11. Meshram V., Patil K., Meshram V., Hanchate D., Ramkteke S.D. Machine learning in agriculture domain: A state-of-art survey. Artificial Intelligence in the Life Sciences. 2021;1. https://doi.org/10.1016/j.ailsci.2021.100010

12. Oikonomidis A., Catal C., Kassahun A. Deep learning for crop yield prediction: a systematic literature review. New Zealand Journal of Crop and Horticultural Science. 2022;51(1). https://doi.org/10.1080/01140671.2022.2032213

13. Veeragandham S., H S. A Review on the Role of Machine Learning in Agriculture. Scalable Computing: Practice and Experience. 2020;21(4):583–589. https://doi.org/10.12694/scpe.v21i4.1699

14. Akintuyi O.B. Adaptive AI in precision agriculture: A review: Investigating the use of self-learning algorithms in optimizing farm operations based on real-time data. Open Access Research Journal of Multidisciplinary Studies. 2024;07(02):016–030​. https://doi.org/10.53022/oarjms.2024.7.2.0023

15. Elavarasan D., Durairaj Vincent P.M. Crop Yield Prediction Using Deep Reinforcement Learning Model for Sustainable Agrarian Applications. IEEE Access. 2022;8:86886–86901. https://doi.org/10.1109/ACCESS.2020.2992480

16. Girma Y., Kuma В. A meta analysis on the effect of agricultural extension on farmers’ market participation in Ethiopia. Journal of Agriculture and Food Research. 2022;7. https://doi.org/10.1016/j.jafr.2021.100253

17. Zerssa G., Feyssa D., Kim D.-G., Eichler-Löbermann B. Challenges of Smallholder Farming in Ethiopia and Opportunities by Adopting Climate-Smart Agriculture. Agriculture. 2021;11(3). https://doi.org/10.3390/agriculture11030192

18. Wendimu G.Y., Moral M.T. The challenges and prospects of Ethiopian agriculture. Cogent Food & Agriculture. 2021;7(1). https://doi.org/10.1080/23311932.2021.1923619

19. Wassie S.B. Natural resource degradation tendencies in Ethiopia: a review. Environmental Systems Research. 2020;9. https://doi.org/10.1186/s40068-020-00194-1

Mekecha Banchigize Bazezew

ORCID |

National University of Science and Technology MISIS

Moscow, Russian Federation

Gorbatov Alexander Vyacheslavovich
Doctor of Engineering Sciences, Professor

ORCID |

National University of Science and Technology MISIS

Moscow, Russian Federation

Keywords: machine learning, artificial intelligence, agricultural production, precision agriculture technologies, ethiopian conditions

For citation: Mekecha B., Gorbatov A.V. The role of machine learning algorithms in optimizing agricultural production: a review of international experience and adaptation to Ethiopian conditions. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1773 DOI: 10.26102/2310-6018/2025.48.1.005 (In Russ).

50

Full text in PDF

Received 10.12.2024

Revised 10.01.2025

Accepted 16.01.2025