Автоматизированная сегментация пользователей с применением RFM-анализа в маркетинговых стратегиях
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Automated user segmentation using RFM analysis in marketing strategies

idSvyatov R.S.

UDC 004.62
DOI: 10.26102/2310-6018/2025.48.1.018

  • Abstract
  • List of references
  • About authors

The relevance of the study is determined by the need to enhance the effectiveness of marketing strategies through automated and customizable customer segmentation. This work proposes a universal customer data management system based on RFM segmentation with the ability to configure flexible logic, as well as the capability to integrate with various external systems. Traditional CRM systems and manual RFM segmentation methods are limited in functionality and do not always meet the business needs for flexibility and integration with various data sources. The study identifies the shortcomings of traditional CRM systems and suggests points for improvement in the described system. Additionally, an experiment was conducted comparing the RFM segments generated using the proposed architecture with Yandex's auto-strategies in the Yandex.Direct advertising platform. The application of the system showed significant advantages over auto-strategies, including a 30.71% increase in purchases in the case of a clothing store. The results confirm the practical value of the system for optimizing marketing campaigns and improving conversion. The results are of practical importance for companies in need of customized solutions and integrations. Further development is proposed, focusing on improving the RFM segmentation method by implementing machine learning algorithms and exploring additional effective channels for utilizing the generated segments.

1. Veres K.V., Lipnitskaya N.I. RFM-analiz i ego primenenie. In: Aktual'nye voprosy ekonomiki i informatsionnykh tekhnologii: Sbornik tezisov i statei dokladov 59-oi nauchnoi konferentsii aspirantov, magistrantov i studentov BGUIR, 17–21 April 2023, Minsk, Belarus. Minsk: Belarusian State University of Informatics and Radioelectronics; 2023. pp. 55–57. (In Russ.).

2. Ershova E.Yu. RFM analysis in marketing practice. In: Stanovlenie i razvitie predprinimatel'stva v Rossii: istoriya, sovremennost' i perspektivy: Sbornik nauchnykh statei X yubileinoi mezhdunarodnoi nauchnoi konferentsii, 25 May 2023, Smolensk, Russia. Kursk: Izd-vo ZAO "Universitetskaya kniga"; 2023. pp. 47–50. (In Russ.).

3. Bagdasaryan A.L. Customer base segmentation by loyalty indicators based on RFM-analysis. In: Matematika i informatika v obrazovanii i biznese: Sbornik materialov mezhdunarodnoi nauchno-prakticheskoi konferentsii, 23 April 2020, Moscow, Russia. Moscow: Aegitas; 2020. pp. 33–38. (In Russ.).

4. Titova N.A., Shchekoldin V.Yu. The Development of Targeted Marketing Strategies Based on Modified RFM-Analysis. Practical Marketing. 2015;(4):8–16. (In Russ.).

5. Lepilo N.N., Eremenko O.Yu. Sovershenstvovanie protsessa upravleniya vzaimootnosheniyami s klientami na osnove RFM-analiza. In: Napravleniya povysheniya effektivnosti upravlencheskoi deyatel'nosti organov gosudarstvennoi vlasti i mestnogo samoupravleniya: Sbornik tezisov VI mezhdunarodnoi nauchno-prakticheskoi konferentsii, 26 January 2024, Alchevsk, Russia. Alchevsk: Donbas State Technical University; 2024. pp. 318–322. (In Russ.).

6. Gustriansyah R., Suhandi N., Antony F. Clustering optimization in RFM analysis Based on k-Means. Indonesian Journal of Electrical Engineering and Computer Science. 2020;18(1):470–477. https://doi.org/10.11591/ijeecs.v18.i1.pp470-477

7. Sabuncu İ., Türkan E., Polat H. Customer segmentation and profiling with RFM analysis. Turkish Journal of Marketing. 2020;5(1):22–36. https://doi.org/10.30685/tujom.v5i1.84

8. Parikh Ya., Abdelfattah E. Clustering Algorithms and RFM Analysis Performed on Retail Transactions. In: 2020 11th IEEE Annual Ubiquitous Computing, Electronics & Mobile Communication Conference (UEMCON), 28–31 October 2020, New York, USA. IEEE; 2020. pp. 0506–0511. https://doi.org/10.1109/UEMCON51285.2020.9298123

9. Lewaaelhamd I. Customer segmentation using machine learning model: an application of RFM analysis. Journal of Data Science and Intelligent Systems. 2024;2(1):165–172.

10. Svyatov R.S. The role of user identification in predicting target actions on a website. Modeling, Optimization and Information Technology. 2024;12(4). (In Russ.). https://doi.org/10.26102/2310-6018/2024.47.4.037

Svyatov Roman Sergeevich

Email: romasvyatov@yandex.ru

ORCID |

RUDN University

Moscow, Russian Federation

Keywords: RFM analysis, marketing automation, customer loyalty, user segmentation, e-commerce, advertising strategy optimization

For citation: Svyatov R.S. Automated user segmentation using RFM analysis in marketing strategies. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1798 DOI: 10.26102/2310-6018/2025.48.1.018 (In Russ).

51

Full text in PDF

Received 12.01.2025

Revised 05.02.2025

Accepted 07.02.2025