Keywords: pump, computational fluid dynamics, ventricular assist device, hemolysis index, hemolysis performance, openFOAM, finite volume method
Influence of geometric parameters of ventricular assist device pumps on hemolytic performance
UDC 621.01
DOI: 10.26102/2310-6018/2025.48.1.028
This paper presents an analysis of the impact of ventricular assist device (VAD) pump geometry on hemolytic performance. The relevance of the study is driven by the necessity to improve existing pumps, design new pumps, and address the lack of research on the correlation between pump geometry and hemolysis. The prototype is an axial four-blade ventricular assist pump currently used in clinical practice. To conduct the analysis, hydrodynamic modelling of fluid flow in the pump was performed using the finite volume method in OpenFOAM11. The numerical simulations were carried out using MRF and NonConformalCoupling technologies along with the LowRe k-ω SST turbulence model. It has been found that reducing the outer diameter, increasing the hub skew angle, and increasing the hub diameter lead to a lower total hemolysis index at a flow rate of 2.4 L/min, similarly, increasing the hub skew angle and reducing the outer diameter decrease total hemolysis index at a flow rate of 5.4 L/min. The findings of the study provide practical value for the design and modernization of axial pumps in ventricular assist devices.
1. Townsend N., Kazakiewicz D., Wright F.L., et al. Epidemiology of cardiovascular disease in Europe. Nature Reviews Cardiology. 2022;19:133–143. https://doi.org/10.1038/s41569-021-00607-3
2. Savarese G., Lund L.H. Global Public Health Burden of Heart Failure. Cardiac Failure Review. 2017;3(1):7–11. https://doi.org/10.15420/cfr.2016:25:2
3. Savarese G., Becher P.M., Lund L.H., Seferovic P., Rosano G.M.C., Coats A.J.S. Global burden of heart failure: a comprehensive and updated review of epidemiology. Cardiovascular Research. 2022;118(17):3272–3287. https://doi.org/10.1093/cvr/cvac013
4. Miller L.W., Pagani F.D., Russell S.D., et al. Use of a Continuous-Flow Device in Patients Awaiting Heart Transplantation. New England Journal of Medicine. 2007;357(9):885–896. https://doi.org/10.1056/NEJMoa067758
5. Llerena-Velastegui J., Santafe-Abril G., Villacis-Lopez C., et al. Efficacy and Complication Profiles of Left Ventricular Assist Devices in Adult Heart Failure Management: A Systematic Review and Meta-Analysis. Current Problems in Cardiology. 2024;49(1). https://doi.org/10.1016/j.cpcardiol.2023.102118
6. Selmi M., Chiu W.-Ch., Chivukula V.K., et al. Blood damage in Left Ventricular Assist Devices: Pump thrombosis or system thrombosis? International Journal of Artificial Organs. 2019;42(3):113–124. https://doi.org/10.1177/0391398818806162
7. Reul H.M., Akdis M. Blood pumps for circulatory support. Perfusion. 2000;15(4):295–311. https://doi.org/10.1177/026765910001500404
8. Sorguven E., Ciblak N., Okyar A.F., et al. Flow Simulation and Optimization of a Left Ventricular Assist Device. In: Volume 8: Heat Transfer, Fluid Flows, and Thermal Systems, Parts A and B: Proceedings of the ASME 2007 International Mechanical Engineering Congress and Exposition, 11–15 November 2007, Seattle, USA. ASME; 2007. pp. 1401–1407. https://doi.org/10.1115/IMECE2007-41747
9. Oran E., Abo-Serie E., Jewkes J., Henry M., Oran B. Design and optimisation of an Intra-Aortic Shrouded rotor axial pump. Journal of Biomechanics. 2024;162. https://doi.org/10.1016/j.jbiomech.2023.111858
10. Khaustov A.I., Boyarskii G.G. The Influence of Manufacturing Technology of a Micropump for Auxiliary Blood Circulation on Its Pumping and Hemodynamic Characteristics. Biomedical Engineering. 2023;56(6):387–391. https://doi.org/10.1007/s10527-023-10242-6
11. Krotov K.V., Khaustov A.I., Boyarskii G.G. Modelirovanie travmy krovi v silovom pole. In: Matematicheskoe modelirovanie na super-EVM eksa- i zettaflopsnoi proizvoditel'nosti: I Vserossiiskaya shkola-seminar NTsFM, 05–09 December 2022, Sarov, Russia. Sarov: Russian Federal Nuclear Center All-Russian Research Institute of Experimental Physics; 2022. pp. 56–57. (In Russ.). https://doi.org/10.53403/9785951505224_56
12. Khaustov A.I., Nevzorov A.M., Itkin G.P. Osobennosti proektirovaniya nasosov dlya vspomogatel'nogo krovoobrashcheniya. In: XI Vserossiiskii s"ezd transplantologov s mezhdunarodnym uchastiem: Materialy s"ezda: Tezisy dokladov, 21–23 September 2022, Moscow, Russia. Moscow: Natsional'nyi meditsinskii issledovatel'skii tsentr transplantologii i iskusstvennykh organov imeni akademika V.I. Shumakova; 2022. P. 151.
13. Khaustov A.I., Boyarsky G.G., Krotov K.V. Designing of a Micropump System for Circulatory Support. Journal of the Russian Universities. Radioelectronics. 2022;25(5):104–112. (In Russ.). https://doi.org/10.32603/1993-8985-2022-25-5-104-112
14. Kuleshov A.P., Itkin G.P., Buchnev A.S., Drobyshev A.A. Mathematical evaluation of hemolysis in a channel centrifugal blood pump. Russian Journal of Transplantology and Artificial Organs. 2020;22(3):79–85. https://doi.org/10.15825/1995-1191-2020-3-79-85
15. Giersiepen M., Wurzinger L.J., Opitz R., Reul H. Estimation of Shear Stress-related Blood Damage in Heart Valve Prostheses – in Vitro Comparison of 25 Aortic Valves. International Journal of Artificial Organs. 1990;13(5):300–306. https://doi.org/10.1177/039139889001300507
16. Thamsen B., Blümel B., Schaller J., et al. Numerical Analysis of Blood Damage Potential of the HeartMate II and HeartWare HVAD Rotary Blood Pumps. Artificial Organs. 2015;39(8):651–659. https://doi.org/10.1111/aor.12542
Keywords: pump, computational fluid dynamics, ventricular assist device, hemolysis index, hemolysis performance, openFOAM, finite volume method
For citation: Krotov K.V., Khaustov A.I. Influence of geometric parameters of ventricular assist device pumps on hemolytic performance. Modeling, Optimization and Information Technology. 2025;13(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1827 DOI: 10.26102/2310-6018/2025.48.1.028 (In Russ).
Received 17.02.2025
Revised 25.02.2025
Accepted 03.02.2025