Эффективные совместные периферийные вычисления для транспортной сети с использованием службы кластеризации
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Efficient collaborative peripheral computing for a transport network using a clustering service

Komarenko Y.A.,  Krepyshev D.A. 

UDC 004.75
DOI: 10.26102/2310-6018/2025.50.3.005

  • Abstract
  • List of references
  • About authors

Modern Internet of Vehicles (IoV) applications place high demands on reliability and minimal response time in dynamic traffic conditions. However, high-speed vehicles and complex infrastructure such as intersections can lead to loss of communication and increased delays in data transmission and processing. The paper proposes an innovative framework for cluster interaction of vehicles based on peripheral computing (CCVEC), implemented on the OpenStack platform. The development is focused on ensuring stable communication and rational allocation of computing resources in intelligent transport systems. The conducted testing covered various traffic scenarios, including high-density traffic areas. The results showed that the proposed solution supports stable communication between onboard sensors and cloud services. Under optimal conditions, the average latency was about 390 ms, and the throughput reached 30 kB/s. The platform has demonstrated high performance and efficient memory usage when allocating resources. Thus, the CCVEC framework is able to reduce delays, increase connection reliability and efficiently use local resources, which makes it promising for implementation in IoV-based systems and peripheral computing.

1. Zhou X., Ke R., Yang H., Liu Ch. When Intelligent Transportation Systems Sensing Meets Edge Computing: Vision and Challenges. Applied Sciences. 2021;11(20). https://doi.org/10.3390/app11209680

2. Li Q., Chen P., Wang R. Edge Computing for Intelligent Transportation System: A Review. In: Cyberspace Data and Intelligence, and Cyber-Living, Syndrome, and Health: International 2019 Cyberspace Congress, CyberDI and CyberLife: Proceedings: Part II, 16–18 December 2019, Beijing, China. Singapore: Springer; 2019. P. 130–137. https://doi.org/10.1007/978-981-15-1925-3_10

3. Lakkakorpi J., Pitkänen M., Ott J. Using Buffer Space Advertisements to Avoid Congestion in Mobile Opportunistic DTNs. In: Wired/Wireless Internet Communications: 9th IFIP TC 6 International Conference, WWIC 2011: Proceedings, 15–17 June 2011, Vilanova i la Geltrú, Spain. Berlin, Heidelberg: Springer; 2011. P. 386–397. https://doi.org/10.1007/978-3-642-21560-5_32

4. Yang B., Wu B., You Yu., Guo Ch., Qiao L., Lv Zh. Edge Intelligence Based Digital Twins for Internet of Autonomous Unmanned Vehicles. Software: Practice and Experience. 2024;54(10):1833–1851. https://doi.org/10.1002/spe.3080

5. Abraham A., Prasad Sh., Alhammadi A., Lestable Th., Chaabane F. Internet of Vehicles and Computer Vision Solutions for Smart City Transformations. Cham: Springer; 2025. 476 p. https://doi.org/10.1007/978-3-031-72958-4

6. Yang J., Tan Yu., Xie J., Teng B., Dong S. Vehicle Clustering Based Edge Caching Scheme in Internet of Vehicles. IET Communications. 2023;17(15):1829–1836. https://doi.org/10.1049/cmu2.12657

7. Makawana P.R., Joshi S., Katira A., Bharvad J., Pawar Ch. A Bibliometric Analysis of Recent Research on Delay-Tolerant Networks. In: ICT Systems and Sustainability: Proceedings of ICT4SD 2022, 29–30 July 2022, Goa, India. Singapore: Springer; 2023. P. 247–256. https://doi.org/10.1007/978-981-19-5221-0_24

8. Wang J., Shang P. Edge Computing Application of Expressway Intelligent Transportation System Based on IoT Technology. Computing and Informatics. 2024;43(4):974–992. https://doi.org/10.31577/cai_2024_4_974

9. Liu J., Wei J., Luo R., Yuan G., Liu J., Tu X. Computation Offloading in Edge Computing for Internet of Vehicles via Game Theory. Computers, Materials & Continua. 2024;81(1):1337–1361. https://doi.org/10.32604/cmc.2024.056286

10. More A., Kale R. Review on Recent Research Trends and Applications in Delay Tolerant Networks. In: 2022 6th International Conference on Computing, Communication, Control and Automation (ICCUBEA), 26–27 August 2022, Pune, India. IEEE; 2022. P. 1–9. https://doi.org/10.1109/ICCUBEA54992.2022.10011041

Komarenko Yegor Andreevich

Kuban State Agrarian University named after I.T. Trubilin

Krasnodar, Russian Federation

Krepyshev Dmitry Alexandrovich
Candidate of Economic Sciences

Kuban State Agrarian University named after I.T. Trubilin

Krasnodar, Russian Federation

Keywords: internet of vehicles (IoV), peripheral computing, intelligent transport systems, communication reliability, data transmission latency, cluster interaction, computing resource allocation, openStack, cloud services, on-board sensors

For citation: Komarenko Y.A., Krepyshev D.A. Efficient collaborative peripheral computing for a transport network using a clustering service. Modeling, Optimization and Information Technology. 2025;13(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1925 DOI: 10.26102/2310-6018/2025.50.3.005 (In Russ).

5

Full text in PDF

Received 06.05.2025

Revised 06.06.2025

Accepted 25.06.2025