Автоматизированное проектирование интерпретируемой модели машинного обучения для оперативного прогнозирования силы ветра на морском побережье
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Automated design of an interpretable machine learning model for operational coastal wind forecasting

idSherstnev P.A., idSemenkin E.S., idMitrofanov S.A., idGanchev T.D.

UDC 004.89
DOI: 10.26102/2310-6018/2025.49.2.032

  • Abstract
  • List of references
  • About authors

The article considers the problem of designing a system for operational short-term forecasting of wind speed at a specific point on the coast. An automated approach to designing hybrid machine learning models that combine an ensemble of multilayer neural networks and an interpretable system based on fuzzy logic is proposed. The method is based on the automated formation of an ensemble of neural networks and a system based on fuzzy logic using self-configuring evolutionary algorithms, which allows adapting to the features of the input data without manual tuning. After constructing the neural network ensemble, a separate system based on fuzzy logic is formed, learning from its inputs and outputs. This approach allows reproducing the behavior of the neural network model in an interpretable form. Based on experimental testing on a meteorological dataset, the effectiveness of the method is proven, which ensures a balance between the quality of the forecast and the interpretability of the model. It is shown that the constructed interpretable system reproduces the key patterns of the neural network ensemble, while remaining compact and understandable for analysis. The constructed model can be used in decision-making in port services and in organizing coastal events for quick and easy forecasting. The proposed approach as a whole allows obtaining similar models in various situations similar to the one considered.

Keywords: operational forecasting of wind characteristics, ensembles of neural networks, fuzzy logic systems, decision trees, self-configuring evolutionary algorithms

For citation: Sherstnev P.A., Semenkin E.S., Mitrofanov S.A., Ganchev T.D. Automated design of an interpretable machine learning model for operational coastal wind forecasting. Modeling, Optimization and Information Technology. 2025;13(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1945 DOI: 10.26102/2310-6018/2025.49.2.032 (In Russ).

133

Full text in PDF

Received 06.05.2025

Revised 23.05.2025

Accepted 28.05.2025

Published 30.06.2025