1. Ratner Yu.B., Fomin V.V., Ivanchik A.M., Ivanchik M.V. System of the Wind Wave Operational Forecast by the Black Sea Marine Forecast Center. Physical Oceanography. 2017;(5):51–59. https://doi.org/10.22449/1573-160X-2017-5-51-59
2. Zelenko A.A., Strukov B.S., Resnyansky Yu.D., Martynov S.L. A System of Wind Wave Forecasting in the World Ocean and Seas Of Russia. Trudy Gosudarstvennogo okeanograficheskogo instituta. 2014;(215):90–101. (In Russ.).
3. Solari G., Repetto M.P., Burlando M., et al. The Wind Forecast for Safety Management of Port Areas. Journal of Wind Engineering and Industrial Aerodynamics. 2012;104–106:266–277. https://doi.org/10.1016/j.jweia.2012.03.029
4. Burlando M., De Gaetano P., Pizzo M., Repetto M.P., Solari G., Tizzi M. Wind Short-Term Forecast in Port Areas. In: Proceedings of the 6th European-African Conference on Wind Engineering (EACWE), 07–11 July 2013, Cambridge, United Kingdom. 2013. P. 6–8.
5. Chu X., Bai W., Sun Yu., Li W., Liu C., Song H. A Machine Learning-Based Method for Wind Fields Forecasting Utilizing GNSS Radio Occultation Data. IEEE Access. 2022;10:30258–30273. https://doi.org/10.1109/ACCESS.2022.3159231
6. Zhang W., Tian M., Hai Sh., et al. Improving the Forecasts of Coastal Wind Speeds in Tianjin, China Based on the WRF Model with Machine Learning Algorithms. Journal of Meteorological Research. 2024;38(3):570–585. https://doi.org/10.1007/s13351-024-3096-z
7. Aksenov S.V., Novosel'tsev V.B. Organizatsiya i ispol'zovanie neironnykh setei (metody i tekhnologii). Tomsk: Izd-vo NTL; 2006. 128 p. (In Russ.).
8. Terano T., Asai K., Sugeno M. Prikladnye nechetkie sistemy. Moscow: Mir; 1993. 368 p. (In Russ.).
9. Rokach L., Maimon O.Z. Data Mining with Decision Trees: Theory and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd.; 2008. 244 p.
10. Semenkin E. Computational Intelligence Algorithm-Based Comprehensive Human Expert and Data-Driven Model Mining for the Control, Optimization and Design of Complicated Systems. International Journal on Information Technologies & Security. 2019;11:63–66.
11. Lipinsky L.V., Semenkin E.S. Application of Genetic Programming Algorithm in Automated Design of Intellectual Information Technologies. Vestnik SibSAU. Aerospace Tehnologies and Control Systems. 2006;(3):22–26. (In Russ.).
12. Koza J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection. Cambridge: The MIT Press; 1998. 819 p.
13. Al-Helali B., Chen Q., Xue B., Zhang M. Genetic Programming-Based Feature Selection for Symbolic Regression on Incomplete Data. Evolutionary Computation. 2024;1–27. https://doi.org/10.1162/evco_a_00362
14. Gorzałczany M.B., Rudziński F. Time-Series-Dynamics Modelling and Forecasting – An Accurate and Interpretable Genetic-Fuzzy Approach. In: Advances in Fuzzy Logic and Technology 2017: Proceedings of: EUSFLAT-2017 – The 10th Conference of the European Society for Fuzzy Logic and Technology, 11–15 September 2017, Warsaw, Poland; IWIFSGN'2017 – The Sixteenth International Workshop on Intuitionistic Fuzzy Sets and Generalized Nets, 13–15 September 2017, Warsaw, Poland: Volume 2. Cham: Springer; 2018. P. 165–175. https://doi.org/10.1007/978-3-319-66824-6_15
15. Ishibuchi H., Nozaki K., Tanaka H. Distributed Representation of Fuzzy Rules and Its Application to Pattern Classification. Fuzzy Sets and Systems. 1992;52(1):21–32. https://doi.org/10.1016/0165-0114(92)90032-Y
16. Holland J.H. Genetic Algorithms. Scientific American. 1992;267:66–72. https://doi.org/10.1038/scientificamerican0792-66
17. Alam T., Qamar Sh., Dixit A., Benaida M. Genetic Algorithm: Reviews, Implementations, and Applications. International Journal of Engineering Pedagogy. 2020;10(6):57–77. https://doi.org/10.3991/ijep.v10i6.14567
18. Mamdani E.H., Assilian S. An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller. International Journal of Man-Machine Studies. 1975;7(1):1–13. https://doi.org/10.1016/S0020-7373(75)80002-2
19. Sherstnev P.A., Semenkin E.S. Self-Configuring Genetic Programming Algorithms with Success History-Based Adaptation. Siberian Aerospace Journal. 2025;26(1):60–70.
20. Breiman L., Friedman J., Olshen R.A., Stone Ch.J. Classification and Regression Trees. New York: Chapman & Hall/CRC; 1984. 368 p. https://doi.org/10.1201/9781315139470
21. Zakharova O.I., Artyushkina E.S., Kholopov S.V. Derev'ya reshenii i algoritmy ikh postroeniya. Eurasian Scientific Association. 2020;(4–2):97–99. (In Russ.).
22. Karaseva T.S. Self-Configuring Genetic Programming Algorithm for a Cauchy Problem and Variational Problem in Symbolic Form. Proceedings of the Institute for Systems Analysis Russian Academy of Sciences. 2019;69(3):80–90. (In Russ.). https://doi.org/10.14357/20790279190307
23. Mitrofanov S., Semenkin E.S. Decision Tree Pruning Method Using Delayed Sampling. In: 2024 International Conference on Information Technologies (InfoTech), 11–12 September 2024, Sofia, Bulgaria. IEEE; 2024. P. 1–4. https://doi.org/10.1109/InfoTech63258.2024.10701393
24. Storn R., Price K. Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. Journal of Global Optimization. 1997;11(4):341–359. https://doi.org/10.1023/A:1008202821328
25. Sherstnev P.A. Self-Configuring Evolutionary Algorithms Based Design of Hybrid Interpretable Machine Learning Models. In: Hybrid Methods of Modeling and Optimization in Complex Systems: Proceedings of International Workshop "Hybrid Methods of Modeling and Optimization in Complex Systems" (in the Framework of the Eleventh International Conference on Mathematical Models and Their Applications), 22–24 November 2022, Krasnoyarsk, Russia. European Publisher; 2023. P. 313–321. https://doi.org/10.15405/epct.23021.38
26. Tanabe R., Fukunaga A. Success-History Based Parameter Adaptation for Differential Evolution. In: 2013 IEEE Congress on Evolutionary Computation, 20–23 June 2013, Cancun, Mexico. IEEE; 2013. P. 71–78. https://doi.org/10.1109/CEC.2013.6557555
27. Mann H.B., Whitney D.R. On a Test of Whether One of Two Random Variables Is Stochastically Larger than the Other. Annals of Mathematical Statistics. 1947;18(1):50–60. https://doi.org/10.1214/aoms/1177730491