Критерий освоения кластерного окна терминов в адаптивно-обучающих системах
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Criterion for mastering the cluster window of terms in adaptive learning systems

idPolyansky K.V., idKovalev I.V.

UDC 004.912; 004.89
DOI: 10.26102/2310-6018/2025.51.4.024

  • Abstract
  • List of references
  • About authors

The criterion for mastering a cluster window of terms in an adaptive learning system is proposed. The adaptive learning technique of L.A. Rastrigin is taken as a basis for the study. Its application in combination with a frequency dictionary of terms is considered. The criterion for mastering a cluster window of terms is calculated as a weighted sum of probabilities of ignorance of terms, normalized by the sum of their weights. This criterion allows regulating the issuance of cluster terms for training, ensuring their priority display during training using the adaptive learning technique. Also, the main criterion of training quality has been modified; a threshold value has been introduced for it, the change of which changes the behavior of the system during student testing. Thus, before reaching the threshold value, terms are issued from the cluster window, after - in accordance with the classical criterion of training quality. Student testing is simulated on a sample of 210 terms of the frequency dictionary according to system analysis with a duration of 100 sessions. The analysis of the modified adaptive learning system operation has been carried out. The proposed criterion of learning quality was compared with the previously used one. For cluster (target) terms, a decrease in the probability of ignorance and an increase in the frequency of their occurrence during testing on the developed algorithm were revealed. Which is a good indicator of achieving the goals set during the study.

1. Kovalev I.V., Karaseva M.V., Suzdaleva E.A. Sistemnye aspekty organizatsii i primeneniya mul'tilingvisticheskoi adaptivno-obuchayushchei tekhnologii. Educational Technology & Society. 2002;5(2):198–212. (In Russ.).

2. Dzhumagalieva A.M., Rystygulova V.B., Omarkulova G.Sh., Omarzhanova G.K. Intellektual'nye adaptivnye obrazovatel'nye tekhnologii na osnove Big Data i mashinnogo obucheniya. In the World of Science and Education. 2025;150–153. (In Russ.).

3. Polyansky K.V., Kovalev I.V. Personalization of the Adaptive Learning Method of L.A. Rastrigin Based on a Frequency Dictionary Using Cluster Analysis of Text Corpora. In: Nauka, tekhnologii, obshchestvo: ekologicheskii inzhiniring v interesakh ustoichivogo razvitiya territorii (NTO-V-2024): Materialy V Vserossiiskoi (natsional'noi) nauchnoi konferentsii, 07–08 November 2024, Krasnoyarsk, Russia. Krasnoyarsk: Krasnoyarsk Science & Technology City Hall; 2024. P. 223–234. (In Russ.).

4. Avdeenko T.V., Mezentsev Yu.A. Document Clustering Based on the Semantic Matrix of Relationships for Conceptual Indexing. Computational Technologies. 2020;25(3):99–110. (In Russ.). https://doi.org/10.25743/ICT.2020.25.3.011

5. Boyarsky K., Archakova N., Kanevsky E. Extraction of Low-Frequent Terms from Domain-Specific Texts. In: Analitika i upravlenie dannymi v oblastyakh s intensivnym ispol'zovaniem dannykh: XVIII mezhdunarodnaya konferentsiya, 11–14 October 2016, Ershovo, Moscow Region, Russia. Moscow: Federal Research Center "Computer Science and Control" of the Russian Academy of Sciences; 2016. P. 211–216. (In Russ.).

6. Polyansky K., Kovalev I. Comparison of Cluster and Classical Approaches to Issuing Training Information in Adaptive Learning Systems. In: ITM Web of Conferences (HMMOCS-III 2024): III International Workshop on "Hybrid Methods of Modeling and Optimization in Complex Systems" (HMMOCS-III 2024): Volume 72, 02–04 December 2024, Krasnoyarsk, Russia. Krasnoyarsk: EDP Sciences, Les Ulis; 2025. https://doi.org/10.1051/itmconf/20257204010

7. Leskov V.O. Formation of Lexically Related Components of Information-Vocabulary Basis. Vestnik of SibGAU. 2009;(2):133–136. (In Russ.).

8. Yatsko V.A. Immetrichnoe vzveshivanie terminov. Symbol of Science. 2015;(12–1):87–89. (In Russ.).

9. Khokhlova M.V. Statistical Methods in Lexicographic Research: Representing Frequency Vocabulary. Terra Linguistica. 2023;14(3):80–93. (In Russ.). https://doi.org/10.18721/JHSS.14307

10. Topchiev A.V., Chuljukov V.A. Models of Adaptive Training in Computer Systems. Modern High Technologies. 2010;(5):62–68. (In Russ.).

11. Ilamanov B.B., Meredov O.A. Introduction to Set Theory and Its Mathematical Significance. Science Bulletin. 2023;3(9):278–284. (In Russ.).

12. Gravel N., Marchant T. Rank Dependent Weighted Average Utility Models for Decision Making Under Ignorance or Objective Ambiguity. [Preprint]. SSRN. URL: https://ssrn.com/abstract=4900187 [Accessed 13th July 2025].

13. Bazilevskiy M.P. Generalization of Non-Elementary Linear Regressions. Modelling and Data Analysis. 2023;13(2):85–98. (In Russ.). https://doi.org/10.17759/mda.2023130205

14. Batura T.V. Automatic Text Classification Methods. Software & Systems. 2017;(1):85–99. (In Russ.).

15. Parhomenko P.A., Grigorev A.A., Astrakhantsev N.A. A Survey and an Experimental Comparison of Methods for Text Clustering: Application to Scientific Articles. Proceedings of the Institute for System Programming of the RAS. 2017;29(2):161–200. (In Russ.). https://doi.org/10.15514/ISPRAS-2017-29(2)-6

Polyansky Konstantin Vladimirovich

ORCID | eLibrary |

Siberian Federal University

Krasnoyarsk, Russian Federation

Kovalev Igor Vladimirovich
Doctor of Engineering Sciences, Professor

ORCID | eLibrary |

Siberian Federal University

Krasnoyarsk, Russian Federation

Keywords: adaptive learning system, frequency dictionary, cluster window mastery criterion, learning quality criterion, student testing

For citation: Polyansky K.V., Kovalev I.V. Criterion for mastering the cluster window of terms in adaptive learning systems. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2036 DOI: 10.26102/2310-6018/2025.51.4.024 (In Russ).

36

Full text in PDF

Received 25.07.2025

Revised 15.10.2025

Accepted 21.10.2025