Математическое моделирование и имитационное исследование динамики снежных лавин
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Mathematical modeling and simulation study of snow avalanche dynamics

idKalach A.V., idSoloviev A.S., idLentyaeva T.V., Durdenko V.A. 

UDC 519.876.5:551.578.48
DOI: 10.26102/2310-6018/2025.51.4.018

  • Abstract
  • List of references
  • About authors

A comparative analysis of existing methods for snow avalanche modeling – physical, simulation, and numerical approaches based on continuum mechanics. Their assumptions, limitations, and application features have been identified, which hinder accurate prediction of snow mass dynamics and its interaction with obstacles under natural conditions. It has been shown that the further development of avalanche hazard forecasting and emergency response methods is associated with the use of intelligent decision-support information systems that should possess high scalability, the ability to process large data volumes, and a flexible architecture that allows integration of new modules for modeling, analysis, and data visualization. To address the problem of three-dimensional avalanche flow modeling, a hybrid approach is proposed that combines the advantages of physical and simulation models, ensuring computational efficiency and adaptability of the method to various avalanche formation conditions. A model of snow mass movement has been developed, based on a modified numerical method of smoothed particle hydrodynamics (SPH). A distinctive feature of the method is the use of dimensionless adjustable coefficients instead of constant physical parameters of snow and the application of a hyperbolic smoothing function, which increases the stability and accuracy of numerical calculations while preventing nonphysical particle clustering during compression. The performed computational experiments confirmed that the proposed model adequately describes the motion of snow masses, makes it possible to assess the intensity of their interaction with infrastructure objects, and allows prediction of potential destructive effects in avalanche-prone areas.

1. Duvillier C., Eckert N., Evin G., Deschâtres M. Development and Evaluation of a Method to Identify Potential Release Areas of Snow Avalanches Based on Watershed Delineation. Natural Hazards and Earth System Sciences. 2023;23(4):1383–1408. https://doi.org/10.5194/nhess-23-1383-2023

2. Katsuyama Yu., Katsushima T., Takeuchi Yu. Large-Ensemble Climate Simulations to Assess Changes in Snow Stability over Northern Japan. Journal of Glaciology. 2022;69(275):577–590. https://doi.org/10.1017/jog.2022.85

3. Dkengne Sielenou P., Viallon-Galinier L., Hagenmuller P., et al. Combining Random Forests and Class-Balancing to Discriminate Between Three Classes of Avalanche Activity in the French Alps. Cold Regions Science and Technology. 2021;187. https://doi.org/10.1016/j.coldregions.2021.103276

4. Castebrunet H., Eckert N., Giraud G. Snow and Weather Climatic Control on Snow Avalanche Occurrence Fluctuations over 50 Yr in the French Alps. Climate of the Past. 2012;8(2):855–875. https://doi.org/10.5194/cp-8-855-2012

5. Pérez-Guillén C., Techel F., Hendrick M., et al. Data-Driven Automated Predictions of the Avalanche Danger Level for Dry-Snow Conditions in Switzerland. Natural Hazards and Earth System Sciences. 2022;22(6):2031–2056. https://doi.org/10.5194/nhess-22-2031-2022

6. Choubin B., Borji M., Mosavi A., Sajedi-Hosseini F., Singh V.P., Shamshirband Sh. Snow Avalanche Hazard Prediction Using Machine Learning Methods. Journal of Hydrology. 2019;577. https://doi.org/10.1016/j.jhydrol.2019.123929

7. Evin G., Dkengne Sielenou P., Eckert N., Naveau Ph., Hagenmuller P., Morin S. Extreme Avalanche Cycles: Return Levels and Probability Distributions Depending on Snow and Meteorological Conditions. Weather and Climate Extremes. 2021;33. https://doi.org/10.1016/j.wace.2021.100344

8. Hirashima H., Nishimura K., Yamaguchi S., Sato A., Lehning M. Avalanche Forecasting in a Heavy Snowfall Area Using the Snowpack Model. Cold Regions Science and Technology. 2008;51(2–3):191–203. https://doi.org/10.1016/j.coldregions.2007.05.013

9. Reuter B., Viallon-Galinier L., Horton S., et al. Characterizing Snow Instability with Avalanche Problem Types Derived from Snow Cover Simulations. Cold Regions Science and Technology. 2022;194. https://doi.org/10.1016/j.coldregions.2021.103462

10. Gaume J., Reuter B. Assessing Snow Instability in Skier-Triggered Snow Slab Avalanches by Combining Failure Initiation and Crack Propagation. Cold Regions Science and Technology. 2017;144:6–15. https://doi.org/10.1016/j.coldregions.2017.05.011

11. Viallon-Galinier L., Hagenmuller P., Eckert N. Combining Modelled Snowpack Stability with Machine Learning to Predict Avalanche Activity. The Cryosphere. 2023;17(6):2245–2260. https://doi.org/10.5194/tc-17-2245-2023

12. Mayer S., Techel F., Schweizer J., van Herwijnen A. Prediction of Natural Dry-Snow Avalanche Activity Using Physics-Based Snowpack Simulations. Natural Hazards and Earth System Sciences. 2023;23(11):3445–3465. https://doi.org/10.5194/nhess-23-3445-2023

13. Bui H.H., Fukagawa R., Sako K., Ohno Sh. Lagrangian Meshfree Particles Method (SPH) for Large Deformation and Failure Flows of Geomaterial Using Elastic–Plastic Soil Constitutive Model. International Journal for Numerical and Analytical Methods in Geomechanics. 2008;32(12):1537–1570. https://doi.org/10.1002/nag.688

14. Monaghan J.J. Smoothed Particle Hydrodynamics. Annual Review of Astronomy and Astrophysics. 1992;30:543–574.

15. Kalach A.V., Lentyaeva T.V., Solovyov A.S. Modeling Avalanches in Space Using the Particle Dynamics Method. Information Science and Control Systems. 2024;(3):20–28. (In Russ.).

Kalach Andrey Vladimirovich
Doctor of Chemical Sciences, Professor

ORCID |

Voronezh Institute of the Russian Federal Penitentiary Service

Voronezh, Russian Federation

Soloviev Alexander Semenovich
Doctor of Engineering Sciences, Docent
Email: asoloviev58@yandex.ru

ORCID | eLibrary |

Voronezh Institute of the Russian Federal Penitentiary Service

Voronezh, Russian Federation

Lentyaeva Tatyana Vladimirovna

ORCID |

MIREA - Russian Technological University

Moscow, Russian Federation

Durdenko Vladimir Andreevich

Voronezh Institute of the Russian Federal Penitentiary Service

Voronezh, Russian Federation

Keywords: snow avalanches, mathematical modeling, hydrodynamics of smoothed particles, information system, simulation

For citation: Kalach A.V., Soloviev A.S., Lentyaeva T.V., Durdenko V.A. Mathematical modeling and simulation study of snow avalanche dynamics. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2055 DOI: 10.26102/2310-6018/2025.51.4.018 (In Russ).

13

Full text in PDF

Received 26.08.2025

Revised 02.10.2025

Accepted 15.10.2025