Методика оценки соответствия содержания образовательных программ требованиям рынка труда
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

A methodology for assessing the alignment of educational program content with labor market requirements

Kozhevnikov I.S. 

UDC 004.912
DOI: 10.26102/2310-6018/2025.51.4.020

  • Abstract
  • List of references
  • About authors

The article presents a methodology for assessing the alignment between the content of educational programs and labor market requirements using intelligent text analysis tools. It addresses the issue of mismatch between university-acquired competencies and the actual needs of employers, especially in the context of rapid digitalization and economic transformation. The study substantiates the need to move from manual expert procedures to automated monitoring based on natural language processing models and ontological modeling. The proposed decision support system integrates the RuBERT model, the ESCO ontology, and the RCA metric, enabling the identification of gaps between curricula and job postings, data visualization, and the formulation of recommendations for curriculum adjustments. A practical case is presented, applying the methodology to a training program in the field of information security. The results demonstrate high accuracy in detecting mismatches and confirm the potential of using the system in the design and adaptation of educational programs. The scientific novelty lies in the comprehensive approach to competency analysis, combining linguistic and ontological methods with economic metrics. The methodology can be scaled to other industries and levels of education.

1. Rosenberg V. System of Teaching Based on Semantic Networks: Theory and Practice. Fundamental'nye i prikladnye issledovaniya v sovremennom mire. 2013;(1):184–191. (In Russ.).

2. Schwab K., Davis N. Shaping the Fourth Industrial Revolution. Moscow: The Eksmo Publishing House; 2018. 320 p. (In Russ.).

3. Babich N.S., Ivashchenkova N.V. Competencies in Higher Education and the Labor Market: A Sociocognitive Analysis of the Problem of Integration. Integration of Education. 2024;28(1):68–80. (In Russ.). https://doi.org/10.15507/1991-9468.114.028.202401.068-080

4. Devlin Ja., Chang M.-W., Lee K., Toutanova K. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding. arXiv. URL: https://arxiv.org/abs/1810.04805 [Accessed 10th August 2025].

5. Kozhevnikov I.S., Dubrovskii V.F. Sravnitel'nyi analiz effektivnosti modelei obrabotki estestvennogo yazyka dlya adaptatsii obrazovatel'nykh programm k trebovaniyam rynka truda. Avtomatizatsiya v promyshlennosti. 2025;(4):55–60. (In Russ.).

6. Xun L.Sh., Gottipati S., Shankararaman V. Text-Mining Approach for Verifying Alignment of Information Systems Curriculum with Industry Skills. In: 2015 International Conference on Information Technology Based Higher Education and Training (ITHET), 11–13 June 2015, Lisbon, Portugal. IEEE; 2015. P. 1–6. https://doi.org/10.1109/ITHET.2015.7217959

7. Kawintiranon K., Vateekul P., Suchato A., Punyabukkana P. Understanding Knowledge Areas in Curriculum Through Text Mining from Course Materials. In: 2016 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), 07–09 December 2016, Bangkok, Thailand. IEEE; 2017. P. 161–168. https://doi.org/10.1109/TALE.2016.7851788

8. Nikolaev I.Е. An Intelligent Method for Generating a List of Job Profile Requirements Based on Neural Network Language Models Using ESCO Taxonomy and Online Job Corpus. Business Informatics. 2023;17(2):71–84.

9. Buinevich M.V., Matveev A.V., Smirnov A.S. Current Problems of Information Security Specialists Training and Constructive Approaches to Their Solution in the Emercon of Russian. Vestnik Saint-Petersburg University of State Fire Service of Emercom of Russia. 2022;(3):1–17. (In Russ.).

10. Dmitriev Ya.V., Alyabin I.A., Brovko E.I., Dvinina S.Yu., Demyanova O.V. Fostering University Students' Digital Skills: De Jure vs De Facto. University Management: Practice and Analysis. 2021;25(2):59–79. (In Russ.). https://doi.org/10.15826/umpa.2021.02.015

Kozhevnikov Ilya Sergeevich

eLibrary |

MIREA – Russian Technological University
«IT Class» LLC

Moscow, Russian Federation

Keywords: graduate competencies, labor market, educational program, intelligent decision support system, ruBERT, ESCO ontology, vacancy analysis, RCA metric, monitoring automation, ontology gap

For citation: Kozhevnikov I.S. A methodology for assessing the alignment of educational program content with labor market requirements. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2061 DOI: 10.26102/2310-6018/2025.51.4.020 (In Russ).

46

Full text in PDF

Received 31.08.2025

Revised 03.10.2025

Accepted 15.10.2025