Моделирование орбитальной динамики космических аппаратов спутниковой связи методом линейной интерполяции
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Simulation of orbital dynamics of satellite communication spacecraft by linear interpolation

Sklyarov V.A.,  Sklyarov A.V.,  Кузьменко Р.В.,  idKalach A.V., idСоловьев А.С., Durdenko V.A. 

UDC 621.311.001.57
DOI: 10.26102/2310-6018/2025.51.4.060

  • Abstract
  • List of references
  • About authors

Space technologies are increasingly permeating our lives. Global positioning systems, communications, geology, hydrology, agriculture, and military affairs are just a few of the industries that rely on satellite data. The Russian Federation's satellite constellation is growing every year, and the satellite control system is correspondingly becoming more complex. The high speed of satellites requires constant recalculation of their coordinates with high accuracy. The SGP4 models for low-orbit satellites and the SDP4 models for high-orbit satellites are most commonly used for this purpose. These models provide sufficient calculation accuracy but require significant computing power. When controlling a large number of objects, the computational load can be excessive. This paper is devoted to assessing the error in interpolation calculations of spacecraft positions in low-Earth orbit. To simplify and accelerate calculations of low-orbit satellite dynamics, this paper proposes a linear interpolation method for accelerating satellite position calculations. The results from the SGP4 model were used as a benchmark. A comparative analysis of the accuracy of calculations using the linear interpolation method and the SGP4 model was conducted. It was determined that the acceptable time interval for interpolation should not exceed 60 seconds, ensuring correct interaction between ground stations and the spacecraft.

1. Savvina E.V. Inter-Orbital Spacecraft Transfer: Trajectory Design by Iterating Parameter Values within a Data Grid. Problemy Upravlenia. 2023;(2):65–74. (In Russ.). https://doi.org/10.25728/pu.2023.2.6

2. Aldokhina V.N., Kulikov S.V., Korolev V.O. Model of the Satellite Motion Predicting in Near-Earth Space. Modern High Technologies. 2021;(1):7–11. (In Russ.). https://doi.org/10.17513/snt.38463

3. Lysenko L.N., Betanov V.V. Printsipy i osnovnye napravleniya sovershenstvovaniya nazemnogo avtomatizirovannogo kompleksa upravleniya kosmicheskimi poletami. Herald of the Bauman MSTU. Series "Mechanical Engineering". 2011;(1):17–30. (In Russ.).

4. Vallado D.A., Crawford P. SGP4 Orbit Determination. In: AIAA/AAS Astrodynamics Specialist Conference and Exhibit, 18–21 August 2008, Honolulu, HI, USA. American Institute of Aeronautics and Astronautics; 2008. https://doi.org/10.2514/6.2008-6770

5. Chagina V.A., Grishko D.A., Maiorova V.I. Satellite's Trajectory Propagation at Near-Circular Orbits Using TLE Files in the Simplified SGP Model. Mashinostroenie i komp'yuternye tekhnologii. 2016;(1):52–66. (In Russ.).

6. Sokolov I.A., Tsekhanovich G.S. Analysis of the Movement Model of a Spacecraft in Earth Orbit. Siberian Aerospace Journal. 2025;26(1):107–125. https://doi.org/10.31772/2712-8970-2025-26-1-107-125

7. Karshakov E.V., Pavlov B.V., Tkhorenko M.Y., Papusha I.A. Promising Map-Aided Aircraft Navigation Systems. Gyroscopy and Navigation. 2021;12(1):38–49. https://doi.org/10.1134/S2075108721010077

8. Cilden-Guler D., Hajiyev Ch. SVD-Aided EKF for Nanosatellite Attitude Estimation Based on Kinematic and Dynamic Relations. Gyroscopy and Navigation. 2023;31(4):138–156. (In Russ.).

9. Titenko E.A., Sizov A.S., Schitov A.N., Shevtsov A.N., Schitova E.N., Skripkina E.V. Structural Diagram of the Module for Determining the Location of Small Space Vehicles. T-Comm. 2021;15(4):28–34. (In Russ.). https://doi.org/10.36724/2072-8735-2021-15-4-28-34

10. Anqi L. Analysis of Spacecraft Trajectories for the Space Mission Earth-Apophis-Earth and the Spacecraft Orbital Motion Around the Asteroid Apophis. Engineering Journal: Science and Innovation. 2017;(7). (In Russ.). https://doi.org/10.18698/2308-6033-2017-7-1635

11. Zhang L., Ge P. Trajectory Optimization and Orbit Design of Spacecraft in Hovering Mission. The Journal of the Astronautical Sciences. 2020;67(4):1344–1373. https://doi.org/10.1007/s40295-020-00226-z

12. O'Leary J., Barriot J.-P. An Application of Symplectic Integration for General Relativistic Planetary Orbitography Subject to Non-Gravitational Forces. Celestial Mechanics and Dynamical Astronomy. 2021;133(11-12). https://doi.org/10.1007/s10569-021-10051-7

13. Gorbunov A.V., Churkin A.L., Pavlov D.A. Kosmicheskii kompleks gidrometeorologicheskogo i okeanograficheskogo obespecheniya "Meteor-3M" s kosmicheskim apparatom "Meteor-M". Voprosy elektromekhaniki. Trudy VNIIEM. 2008;105:17–28. (In Russ.).

14. Lysenko L.N., Betanov V.V., Zvyagin F.V. Teoreticheskie osnovy ballistiko-navigatsionnogo obespecheniya kosmicheskikh poletov. Moscow: Izd-vo MGTU im. N.E. Baumana; 2014. 519 p. (In Russ.).

Sklyarov Vladimir Anatolyevich
Candidate of Engineering Sciences, Docent
Email: sva12071969@mail.ru

The M.I. Krivosheev National Research Centre for Telecommunication

Moscow, Russian Federation

Sklyarov Alexander Vladimirovich

Email: sva12071969@mail.ru

The M.I. Krivosheev National Research Centre for Telecommunication

Moscow, Russian Federation

Кузьменко Роман Валентинович
Doctor of Physico-mathematical Sciences, Docent
Email: roman_kuzmenko@inbox.ru

Voronezh Institute of the Federal Penitentiary Service of Russia

Voronezh, Russian Federation

Kalach Andrey Vladimirovich
Doctor of Chemical Sciences, Professor
Email: a_kalach@mail.ru

ORCID |

Voronezh Institute of the Federal Penitentiary Service of Russia

Voronezh, Russian Federation

Соловьев Александр Семенович
Doctor of Engineering Sciences, Docent
Email: asoloviev58@yandex.ru

ORCID |

Voronezh Institute of the Federal Penitentiary Service of Russia

Voronezh, Russian Federation

Durdenko Vladimir Andreevich
Doctor of Engineering Sciences, Docent

Voronezh Institute of the Federal Penitentiary Service of Russia

Voronezh, Russian Federation

Keywords: spacecraft, linear interpolation, calculation error, SGP4, low Earth orbit, directional pattern, time interval, spacecraft location

For citation: Sklyarov V.A., Sklyarov A.V., Кузьменко Р.В., Kalach A.V., Соловьев А.С., Durdenko V.A. Simulation of orbital dynamics of satellite communication spacecraft by linear interpolation. Modeling, Optimization and Information Technology. 2025;13(4). URL: https://moitvivt.ru/ru/journal/pdf?id=2124 DOI: 10.26102/2310-6018/2025.51.4.060 (In Russ).

19

Full text in PDF

Received 06.11.2025

Revised 15.12.2025

Accepted 22.12.2025