Алгоритм оценки характеристик элементов системы управления беспилотных летательных аппаратов ГрАНТ
Работая с сайтом, я даю свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта обрабатывается системой Яндекс.Метрика
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Algorithm for evaluating the characteristics of the control system elements for the GrANT unmanned aerial vehicle

idSilkin A.A.

UDC 629.735.0:681.5.015
DOI: 10.26102/2310-6018/2026.53.2.002

  • Abstract
  • List of references
  • About authors

The relevance of this study stems from the growing demands for precision and fault tolerance in automatic control systems of small-scale unmanned aerial vehicles equipped with internal combustion engines, particularly in the context of implementing the Russian Federation’s Strategy for the Development of Unmanned Aviation until 2035. Under intense vibrational loads, primarily low-frequency torsional oscillations, the accuracy of microelectromechanical inertial sensors degrades, vibration-induced gyro drift occurs, and onboard power supply system stability is disrupted – all of which directly reduce the reliability of automatic control systems and limit the application of unmanned aerial vehicles in high-precision tasks. In this regard, this article is aimed at the development and experimental verification of an algorithm for the objective quantitative evaluation of the characteristics of control system elements for GrANT unmanned aerial vehicles. This algorithm ensures the monitoring of key operating parameters of the compact MGW-4V gyrovertical and the autopilot board under operational vibration conditions, which is necessary for the objective assessment of the effectiveness of vibration protection measures and for improving the reliability of the control system. The paper presents a comparative analysis of the system’s characteristics before and after the implementation of a vibration reduction device designed to suppress torsional oscillations in the range most critical for micro-electromechanical sensors. The research methodology involved conducting a series of flight tests on GrANT-M unmanned aerial vehicles using a specialized procedure for testing the gyrovertical signal processing units, recording roll and pitch angles, initialization time and onboard power supply conditions. The obtained results demonstrate that the developed algorithm allows for the detection of a significant reduction in the «noise» level in angular orientation data and an improvement in the stability of the power supply system after the installation of the vibration protection device. The practical significance of the study lies in providing unmanned aerial vehicle developers with a validated tool for assessing and enhancing the accuracy of control systems operating under high vibration loads.

1. Voronov A., Karaseva T. Analysis of the appearance of vibration in aircraft with the purpose of introducing technologies and systems for its study. Universum: tekhnicheskie nauki. 2023;(1). (In Russ.). URL: https://7universum.com/ru/tech/archive/item/14874

2. Fang X., Dong L., Zhao W.-Sh., et al. Vibration-Induced Errors in MEMS Tuning Fork Gyroscopes with Imbalance. Sensors. 2018;18(6). https://doi.org/10.3390/s18061755

3. Gök K., Karagoz G., Gök A. Vibration Damper Design and Additive Manufacturing for Unmanned Aerial Vehicles. Journal of Mechanical Materials and Mechanics Research. 2023;6(2):23–30. https://doi.org/10.30564/jmmmr.v6i2.5711

4. Kang Ch.-H., Park H.-S., Seo S.-W., Kwag D.-G. Design and Experiment of a Passive Vibration Isolator for Small Unmanned Aerial Vehicles. Applied Sciences. 2024;14(10). https://doi.org/10.3390/app14104113

5. Beltran-Carbajal F., Yañez-Badillo H., Tapia-Olvera R., Favela-Contreras A., Valderrabano-Gonzalez A., Lopez-Garcia I. On Active Vibration Absorption in Motion Control of a Quadrotor UAV. Mathematics. 2022;10(2). https://doi.org/10.3390/math10020235

6. Wang X., Zhang X., Gong H., Jiang J., Rai H.M. A flight control method for unmanned aerial vehicles based on vibration suppression. IET Collaborative Intelligent Manufacturing. 2021;3(3):252–261. https://doi.org/10.1049/cim2.12027

7. Al-Mashhadani M.A. Optimal control and state estimation for unmanned aerial vehicle under random vibration and uncertainty. Measurement and Control. 2019;52(9-10):1264–1271. https://doi.org/10.1177/0020294019866860

8. Guan H., Wong K.C. Spring-Damped Underactuated Swashplateless Rotor on a Bicopter Unmanned Aerial Vehicle. Machines. 2024;12(5). https://doi.org/10.3390/machines12050296

9. Kim I.-H., Jung H.-J., Yoon S., Park J.W. Dynamic Response Measurement and Cable Tension Estimation Using an Unmanned Aerial Vehicle. Remote Sensing. 2023;15(16). https://doi.org/10.3390/rs15164000

10. Huang H., Wei W., Xu N., Yu B., Zhu D., Wang M. Study on the vibration characteristics of wheeled unmanned aerial vehicles. In: Journal of Physics: Conference Series: Volume 3120: 2025 International Conference on Aerospace, Information Technology and Control Engineering (AITCE 2025), 11–13 July 2025, Tianjin, China. IOP Publishing Ltd; 2025. https://doi.org/10.1088/1742-6596/3120/1/012021

Silkin Artyom Anatolyevich
Candidate of Engineering Sciences

ORCID |

Novik-91 Research and Production Design Center

Egorievsk, Russian Federation

Keywords: UAV, grANT, control system, MGW-4V gyrovertical, vibration reduction device, glide-slope system, autopilot

For citation: Silkin A.A. Algorithm for evaluating the characteristics of the control system elements for the GrANT unmanned aerial vehicle. Modeling, Optimization and Information Technology. 2026;14(2). URL: https://moitvivt.ru/ru/journal/pdf?id=2135 DOI: 10.26102/2310-6018/2026.53.2.002 (In Russ).

19

Full text in PDF

Received 19.12.2025

Revised 03.02.2026

Accepted 09.02.2026