МОДИФИКАЦИЯ НЕКОТОРЫХ ПРОЦЕДУР АВТОМАТИЧЕСКОГО АНАЛИЗА ДАННЫХ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

SOME PROCEDURES MODIFICATION OF DATA ANALYSIS

Moiseev A.A. 

UDC 519.23
DOI:

  • Abstract
  • List of references
  • About authors

Performed some algorithms consideration of data analysis, that’s shown their base simplicity. Genetic optimization were transformed to two – step version of stochastic search, whose steps are preliminary mixing of primary search results (interpreted as crossing) and secondary stochastic search (interpreted as mutation). Potential function method allowed implementing the simple procedure of clasterization without any additional requirements to input sample. Learning algorithm of perceptron’s classifier was used the preliminary averaging in secondary neurons with any constant subtraction. Additional adaptive coefficients normalizing do it insufficient at maximization used as decisive function. Fuzzy control learning were developed that’s based on control transactions frequencies equalization at equidistant sample of input states.

1. Statistical methods for digital computers, ed. by Enslein K. ea, NY., Wiley, 1977, 464 p.

2. Rutkowskaya D. ea Neyronnye seti, geneticheskiye algoritmy i nechetkiye sistemy (Neuron’s nets, genetic algorithms and fuzzy systems), publisher “Telecom”, 2006, 452 p.

3. Rotshtein A. Intellektualnye technologii identifikatsii, Vinnitsa, publisher “Universum”, 1999, 320 p.

4. Aizerman M. ea Metod potentsialnych functsij v teorii obucheniya mashin (Potential functions method in mashine learning theory), M., publisher “Nauka”, 1970, 384 p.

5. Vapnik V. ea Teoriya raspoznavaniya obrazov (statisticheskiye problem obucheniya), (Image recognition theory (statistical learning problems)), M., publisher “Nauka”, 1974, 416 p

6. Tsypkin J. Adaptatsiya i obucheniye v avtimaticheskich sistemach (Adaptation and learning in control systems), M., publisher “Nauka”, 1968, 400 p

Moiseev Alexander Alexandrovich
Candidate of Technical Sciences

State Research Institute of Chimmotology

Moscow, Russian Federation

Keywords: data analysis, genetic optimizati, stochastic search, crossing, mutation, potential functions, clasterization

For citation: Moiseev A.A. SOME PROCEDURES MODIFICATION OF DATA ANALYSIS. Modeling, Optimization and Information Technology. 2016;4(4). URL: https://moit.vivt.ru/wp-content/uploads/2016/12/Moiseev_4_16_3.pdf DOI: (In Russ).

477

Full text in PDF

Published 31.12.2016