КРУПНОМАСШТАБНЫЕ АГЕНТ-ОРИЕНТИРОВАННЫЕ МОДЕЛИ И ИХ ТЕХНИЧЕСКАЯ РЕАЛИЗАЦИЯ НА СУПЕРКОМПЬЮТЕРАХ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

LARGE-SCALE AGENT-BASED MODELS AND THEIR TECHNICAL IMPLEMENTATION ON SUPERCOMPUTERS

Ageeva A.F. 

UDC 519.876.5
DOI:

  • Abstract
  • List of references
  • About authors

The article provides an overview of large-scale agent-based models (multi-agent systems) developed over the last decade, analyzing the main aspects, related to the technical implementation - the process of adaptation and running models on supercomputers (or parallel clusters). The variety of scientific-research tasks solved with the help of agent simulation is shown, as well as the design features of large-scale models are listed, and their realization is planned by their authors with the use of supercomputer technologies. The article has been prepared with the support of the Russian Science Foundation (Grant №14-18-01968).

1. . Makarov V.L., Bakhtizin A.R., Sushko E.D., Vasenin V.A., Borisov V.A., Roganov V.A. Agent-orientirovannye modeli: mirovoy opyt i tekhnicheskie vozmozhnosti realizatsii na superkomp'yuterakh // Vestnik Rossiyskoy Akademii Nauk - 2016. t. 86, No.3, pp. 252-262.

2. Makarov V.L., Bakhtizin A.R., Sushko E.D., Vasenin E.A., Borisov V.A., Roganov V.A. Superkomp'yuternye tekhnologii v obshchestvennykh naukakh: agent-orientirovannye demograficheskie modeli // Vestnik Rossiyskoy Akademii Nauk – 2016. t.86, No.5. pp. 412-421.

3. Davis G., Far B.H. Massive – Multiple agent simulation system in a virtual environment // Working Paper. University of Calgary. 02/01/03.

4. Tamrakar S. Performance optimization and statistical analysis of basic immune simulator (BIS) using the FLAME GPU environment // Theses and Dissertations. Paper 963. 2015.

5. Folcik V. A., An G. C., Orosz C. G. The basic immune simulator: an agentbased model to study the interactions between innate and adaptive immunity // Theoretical biology and medical modelling, vol. 4, p. 39, 2007.

6. Tang W., Bennett D.A. Parallel agent-based modelling of land-use opinion dynamics using graphics prosessing units / Conference paper. Proceedings of the 10th International Conference on GeoComputation. 2009.

7. Karmakharm T., Richmond P., Romano D.M. Agent-based large scale simulation of pedestrians with adaptive realistic navigation vector fields // Proceedings of Theory and Practice of Computer Graphics, Sheffild, 2010.

8. Richmond P., Romano D.M. A High performance framework for agent-based pedestrian dynamics on GPU hardware // Proceedings of EUROSIS ESM 20 (European Simulation and Modelling), Oct. 27-29, 2008.

9. Zia K., Farrahi K., Riener A., Ferscha A. An agent-based parallel geosimulation of urban mobility during city-scale evacuation // Simulation – 2013. Doi: 10.1177/0037549713485468

10. Callegari S., Weismann J.D., Tkachenko N., Zollikofer C.P. An agent-based model of human dispersals at a global scale // Advances in Complex Systems 16(4-5), 2013. Doi: 10.1142/S021952913500239

11. Nichols J. A. Parallel simulation of individual-based, physiologically-structured population and predator-prey ecology models. PhD thesis. University of Tennessee. 2008.

12. Parry H. R. Effects of land management upon species population dynamics: a spatially explicit, individual-based model / PhD thesis. University of Leeds. 2006.

13. Welch M., Kwan P., Sajeev A.S.M. A high performance, agent-based simulation of old world screwworm fly lifecycle and dispersal using a graphics processing unit (GPU) platform // Proceedings of 20th International Congress on Modelling and Simulation. Australia, 2013. pp. 782-788.

14. Perez-Rodriguez G., Perez-Perez M., Fdez-Riverola F., Lourenco A. High performance computing for three-dimensional agent-based molecular models // Journal of Molecular Graphics and Modelling 68 (2016). pp. 68-77.

15. Cockrell R.C., Christley S., Chang E., An G. (2015) Towards anatomic scale agent-based modeling with a massively parallel spatially explicit generalpurpose model of enteric tissue (SEGMEnT_HPC). Plos One 10(3): e0122192. doi:10.1371/journal.pone.0122192

16. Perrin D., Ruskin H.J., Crane M. Model refinement through highperformance computing: an agent-based HIV example // Immunome Research. 2010; 6. Doi: 10.1186/1745-7580-6-S1-S3

17. Seekhao N., Shung C., JaJa J., Mongeau L., Li-Jessen N.Y.K. Real-time agent-based modeling simulation with in-situ visualization of complex biological systems – a case study on vocal fold inflammation and healing // http://moit.vivt.ru/ 2017 IEEE International Workshop on High Performance Computational Biology, 2016. pp. 463-472.

18. Joubert J.W., Fourie P.J., Axhausen K.W. Large-scale agent-based combined traffic simulation of private cars and commercial vehicles. Transportation Research Record – 2010. 2168:24-32

19. Medina S. A. O. Personalized multi-activity scheduling of flexible activities / Future Cities Laboratory. Working paper. Jul., 2015.

20. Melnikov V.R., Krzhizhanovskaya V.V., Lees M.H., Boukhanovsky A.V. Data-driven travel demand modeling and agent-based traffic simulation in Amsterdam urban area // Procedia Comuter Science – 2016. v. 80, pp. 2030- 2041.

21. Raney B., Voellmy A., Cetin N., Nagel K. Large scale multi-agent transportation simulations / Conference Papers, 42nd Congress of the European Regional Science Association. Aug., 2002, Dortmund, Germany

22. Ma Z., Fukuda M. A multi-agent spatial simulation library for parallelizing transport simulations // Proceedings of the 2015 Winter Simulation Conference, pp. 115-126.

23. Zhang M. Large-scale agent-based social simulation - a study on epidemic prediction and control / Thesis. National University of Defense Technology, China. 2016. SIKS № 2016-28.

24. Ariyarante A. Large-scale agent-based modeling: simulating Twitter users. Master of Science Thesis – 56 p. University of Maryland. 2016.

25. Gatti M., Cavalin P., Neto S.B., Pinhanez C., Santos C., Gribel D., Appel A.P. Large-scale multi-agent-based modeling and simulation of microblogging-based online social network // MABS 2013, LNAI 8235, pp. 17-33, 2014. Doi: 10.1007/978-3-642-54783-6_2

Ageeva Alina Fagimovna
candidate of architecture
Email: ageevaalina@yandex.ru

Central Economics and Mathematics Institute of RAS

Moscow, Russian Federation

Keywords: large-scale agent-based models, supercomputers, parallel computing, parallel computers, parallel clusters

For citation: Ageeva A.F. LARGE-SCALE AGENT-BASED MODELS AND THEIR TECHNICAL IMPLEMENTATION ON SUPERCOMPUTERS. Modeling, Optimization and Information Technology. 2017;5(3). URL: https://moit.vivt.ru/wp-content/uploads/2017/08/Ageeva_3_1_17.pdf DOI: (In Russ).

470

Full text in PDF

Published 30.09.2017