ПОИСК АНОМАЛИЙ В СЕНСОРНЫХ ДАННЫХ НА ПРИМЕРЕ АНАЛИЗА ДВИЖЕНИЯ МОРСКОГО СУДНА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

ANOMALY DETECTION IN SENSOR DATA IN APPLICATION TO THE ANALYSIS OF MARITIME VESSEL MOTION

Sholokhova A.A. 

UDC 004.85
DOI:

  • Abstract
  • List of references
  • About authors

The article describes algorithms for anomalies detection in the sensory data in the application to the analysis of maritime traffic. The modern vessel is equipped with many sensors, continuously recording the performance of its various subsystems. The collection and storage of such information provide the possibilities of using intelligent data analysis systems. These tasks concern both the issues of ensuring maritime traffic safety (analysis and prevention of dangerous maneuvers) and the problems of increasing economic efficiency (increased fuel consumption) for ship-owners. The onboard sensors can generate numerical data with a frequency from ten seconds for telemetry up to one minute for navigational parameters. Given such a large amount of information, it becomes obvious the need for the development of automated decision support systems. Applied areas of such systems can serve tasks of preventing dangerous maneuvers, predicting maintenance, preventing collisions, optimizing fuel consumption. In the article, the application unsupervised learning for the analysis of navigational data (ship coordinates, speed, course, depth, etc.) and an example of predicting of fuel consumption based on regression models are considered. A description of various mathematical approaches and its demonstration on real data is given. In conclusion, the possible development and improvement of the given methods are considered

1. A. Pinskiy. E-Navigation and unmanned ship navigation. Transport of RF. Journal on Science, Practice, and Economics. 2016. N4 (65). P. 50-54.

2. Brandsæter, G, Manno , E. Vanem, I. Glad. An application of sensorbased anomaly detection in the maritime industry // IEEE International Conference on Prognostics and Health Management, 2016. P. 1–8.

3. Y. Liu,W. Ding. A KNNS based anomaly detection method applied for UAV flight data stream // Prognostics and System Health Management Conference, Beijing, 2015. doi: 10.1109/PHM.2015.7380051.

4. K. D. Borne. Effective Outlier Detection using K-Nearest Neighbor Data Distributions: Unsupervised Exploratory Mining of Non-Stationarity in Data Streams. URL: https://pdfs.semanticscholar.org/f3eb/ 4573d3164345063351979c9409014ec33d4d.pdf

5. V. Shkodyrev, K. Yagafarov, V. Bashtovenko, E. Ilyina. The Overview Of Anomaly Detection Methods in Data Streams // Proceedings of the Second Conference on Software Engineering and Information Management, Saint Petersburg, Russia, April 21, 2017. Vol. 1864.

6. D. Zavarzin. About anomalies detection techniques in time series // Innovations in science: Proc. on XXIX Intern. Conf № 1(26). – Novosibirs, 2014. P. 59–64.

7. T. Klerx, M. Anderka, H. K. Büning, S. Priesterjahn, Model-Based Anomaly Detection for Discrete Event Systems // IEEE 26th International Conference on Tools with Artificial Intelligence, Limassol, 2014, pp. 665- 672. doi: 10.1109/ICTAI.2014.105

8. L. Simon, A.W. Rinehart. A Model-Based Anomaly Detection Approach for Analyzing Streaming Aircraft Engine Measurement Data. URL: ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150000721.pdf.

9. T. Liu, K. M. Ting, Zhi-Hua Zhou. Isolation Forest. URL: https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/icdm08b.pdf.

10. F. Harrou, F. Kadri, S. Chaabane, C. Tahon, Y. Sun. Improved principal component analysis for anomaly detection: Application to an emergency department // Computers & Industrial Engineering, 88, 2015. P. 63–77.

Sholokhova Alena Alekseevna

Email: al.sholokhova@gmail.com

Saint Petersburg State University

St. Petersburg, Russian Federation

Keywords: anomaly detection, sensor data, extreme maneuvering, prediction of fuel consumption r

For citation: Sholokhova A.A. ANOMALY DETECTION IN SENSOR DATA IN APPLICATION TO THE ANALYSIS OF MARITIME VESSEL MOTION. Modeling, Optimization and Information Technology. 2017;5(3). URL: https://moit.vivt.ru/wp-content/uploads/2017/08/Sholohova_3_1_17.pdf DOI: (In Russ).

800

Full text in PDF

Published 30.09.2017