БЕЗЭТАЛОННЫЙ СПОСОБ КОНТРОЛЯ РАБОТОСПОСОБНОСТИ БОРТОВОЙ ВЫЧИСЛИТЕЛЬНОЙ СИСТЕМЫ В КОНСТРУКТИВЕ КОНЦЕПЦИИ IMA
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

WAY OF WITHOUT-ETHALON CONTROL OF ON-BOARD COMPUTER SYSTEM OPERABILITY ACCORDING TO IMA CONCEPTION

Panychev S.A. 

UDC 658.5:681:3
DOI:

  • Abstract
  • List of references
  • About authors

One of the primary tasks of aerospace instrumentation is the improvement of the onboard computer system in accordance with the concept of integration of onboard equipment IMA. Traditionally, the fail-safety of the on-board computer system is provided by a set of hardware-software methods for detecting, localizing and replacing a failed element by one of the reservation methods. This approach involves the introduction of hardware, time, information or software redundancy into the system. In order to minimize the hardware and information redundancy of the diagnostic and control system, the article offers a standardless control method of the performance of the crate multiprocessor supercomputer. The developed algorithm of the control automaton provides self-diagnostics and fault tolerance of the onboard computer system by its majority-dynamic reconfiguration. The intervals between monitoring sessions are determined by the theoretically predicted uptime of the on-board computer system. The procedure for monitoring, diagnosing and restoring the system's operability consists of four stages: monitoring the system's operational state; determination of the nature of the error detected in the first cycle; localization of the failed processor; restoration of the system with the help of an adaptive algorithm for reallocation the tasks of the failed element between operable processors. The practical significance of the proposed version of the standardless control method of on-board computer system is to increase the avionics survivability in harsh environments characterized by complex climatic, mechanical, electromagnetic, radiation effects at the severe restrictions on the weight and size parameters and power consumption.

1. P.P. Paramonov, I.O. Zharinov, “Integrirovannyye bortovyye vychislitel'nyye sistemy: obzor sovremennogo sostoyaniya i analiz perspektiv razvitiya v aviatsionnom priborostroyenii” [Integrated onboard computer systems: a review of the current state and analysis of development prospects in aircraft instrument making], Nauchnotekhnicheskiy vestnik informatsionnykh tekhnologiy, mekhaniki i optiki, 2013, No. 2(82), pp. 1-17. (in Russian)

2. V.I. Baburov, B.V. Ponomarenko, “Printsipy integrirovannoi bortovoi avioniki“[Principles of integrated onboard avionics], SPb.: Agentstvo «RDK-Print», 2005, 338 p. (in Russian)

3. Rene L.C. Eveleens,” Open Systems Integrated Modular Avionics – The Real Thing”, Mission Systems Engineering. Educational Notes RTO-EN-SCI-176, 2006, Neuilly-sur-Seine, Nov., France: RTO, Paper 2, pp. 2-1-2-22.

4. E.A. Fedosov, “IMA Russian Program - Overall presentation”, in Proc. European and Russian Joint Avionics Forum, Moscow, 2009, 15 p.

5. L.V. Savkin, A.E. Shirshakov, V.M. Novichkov, “Postroenie rekonfiguriruemoi sistemy funktsional'nogo kontrolya i diagnostiki bortovogo kompleksa upravleniya kosmicheskogo apparata” [Construction of a reconfigurable system for functional monitoring and diagnostics of the onboard control system of the spacecraft], Aviakosmicheskoe priborostroenie, 2015, No. 6, pp. 8-13. (in Russian)

6. N.S. Abramov, V.F. Zadneprovskii, A.A. Talalaev, V.P. Fralenko, M.V. Khachumov, “Perspektivnaya sistema monitoringa i prognozirovaniya sostoyaniya kosmicheskogo apparata na osnove analiza integrirovannoi informatsii” [A promising system for monitoring and forecasting the state of the spacecraft based on the analysis of integrated information], Aviakosmicheskoe priborostroenie, 2015, No. 6, pp. 33-38. (in Russian)

7. V.N. Rusanov, A.Yu. Kiselev, N.V. Sil'yanov, “Samodiagnostiruemaya trekhkanal'naya bortovaya vychislitel'naya sistema s rezervirovaniem zameshcheniem” [Self-diagnosed threechannel on-board computer system with redundant redundancy], Aviakosmicheskoe priborostroenie, 2015, No. 3, pp. 23-31. (in Russian)

8. Y.-C. Chow, W. Kohler, “Models for Dynamic Load Balancing in a Heterogenerous Multiple Processor System”, IEEE Trans. Comput, Vol. C-28, No. 5, pp. 353-362.

9. V.N. Bakulin, S.Yu. Malkov, V.V. Goncharov, V.I. Kovalev, “Upravlenie obespecheniem stoikosti slozhnykh tekhnicheskikh sistem”[Control of the durability of complex technical systems], M.: Fizmatlit, 2006. (in Russian)

10. L. Longden, “The Designing a Single Board Computers for Space Using the Most Advanced Processor and Mitigation Technologies”, in Proc. European Space Components Conference/ European Space Agancy, Toulouse, France. 2002, pp. 313-316.

11. C. Shelton, P. Koopman, W. Nace, “A Framework for Scalable Analysis and Design of System-Wide Graceful Degradation in Distributed Embedded Systems”, in Proc. Eighth IEEE International Workshop on Object-Oriented Real-Time Dependable Systems (WORDS 2003): Guadelajare (Mexico), Jan. 2003, Guadelajare, 2003, P. 8.

12. A.P. Samoilenko, A.I. Panychev, S.A. Panychev, “Metod otsenki nadezhnosti kompleksa radioelektronnogo oborudovaniya letatel'nogo apparata” [Method for assessing the reliability of a complex of radio electronic equipment of an aircraft], Izvestiya SFedU. Tekhnicheskie nauki, 2015, № 3 (163), pp. 102-110. (in Russian)

13. A.P. Samoilenko, A.I. Panychev, S.A. Panychev, “Sintez sistemy avtomaticheskogo kontrolya rabotosposobnosti bortovogo radioelektronnogo kompleksa” [Synthesis of the automatic control system of the on-board radio electronic complex], Izvestiya SFedU. Tekhnicheskie nauki, 2015, No.11 (172). pp. 166-177. (in Russian)

14. A.P. Samoilenko, A.I. Panychev, S.A. Panychev, “Statistical Diagnostics of Irreversible Avionics As a Controlled Random Process”, in Proc. 2016 IEEE International Siberian Conference on Control and Communications (SIBCON), Moscow, Russia, May 12−13, 2016, DOI. 10.1109/SIBCON.2016.7391722.

15. S. Panychev, V. Guzik, A. Samoylenko, A. Panychev, “The prerequisites of forming a risk management system in the design of facilities space application”, MATEC Web of Conferences 102, 01030 (2017) V International Forum for Young Scientists "Space Engineering", DOI: 10.1051/matecconf/201710201030.

16. A.P. Samoylenko, A.I. Panychev, S.A. Panychev, “Technologies of aggregation for integral criteria of evaluating the efficiency of onboard computer systems”, in Proc. 2017 Second Russia and Pacific Conference on Computer Technology and Applications (RPC), Vladivostok, Russia, 25-29 Sept. 2017, DOI: 10.1109/RPC.2017.8168089

17. V. Guzik, A. Samoylenko, A. Panychev, S. Panychev, “Reconfiguring of structure as self diagnosis tool of on-board computers”, in Proc. 15th East-West Design & Test Symposium (EWDTS), 2017 IEEE, Novi Sad, Serbia, Sept 29 - Oct 2, 2017, DOI: 10.1109/EWDTS.2017.8110106.

18. A.P. Samoylenko, A.I. Panychev, S.A. Panychev, “Evaluation of telecommunication system reliability via stress testing”, in Proc. 2017 IEEE International Siberian Conference on Control and Communications (SIBCON), Astana, Kazakhstan, June 29–30, 2017, DOI: 10.1109/SIBCON. 2017.7998330.

19. V.F. Guzik, A.P. Samoilenko, A.I. Panychev, S.A. Panychev, “Kriterii znachimosti variatsii v signalakh datchikov vstroennoi sistemy dopuskovogo kontrolya elektronnogo oborudovaniya” [Criteria of the significance of variations in the signals of the sensors of the built-in electronic equipment control system], Modelirovanie, optimizatsiya i informatsionnye tekhnologii. Elektronnyi nauchnyi zhurnal, 2017, No. 3(19). URL: https://moit.vivt.ru/ wpcontent/uploads/2017/10/GuzikSoavtori_3_1_17.pdf. (in Russian).

20. Yu.I. Degtyarev, “Metody optimizatsii”, M.: Sov. radio, 1980. (in Russian).

Panychev Sergey Andreevich

Email: sergpanchv@yandex.ru

Southern Federal University

Taganrog, Russian Federation

Keywords: ima, crate, on-board computer system, automatic control, majoritydynamic method, self-diagnostics, reconfigurable system

For citation: Panychev S.A. WAY OF WITHOUT-ETHALON CONTROL OF ON-BOARD COMPUTER SYSTEM OPERABILITY ACCORDING TO IMA CONCEPTION. Modeling, Optimization and Information Technology. 2018;6(1). URL: https://moit.vivt.ru/wp-content/uploads/2018/01/Panichev_1_1_18.pdf DOI: (In Russ).

565

Full text in PDF

Published 31.03.2018