МОДЕЛЬ ДИНАМИЧЕСКОГО СЕВООБОРОТА НА ОСНОВЕ УРАВНЕНИЯ БЕЛЛМАНА С КОНЕЧНЫМ ГОРИЗОНТОМ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

MODEL OF DYNAMIC CROP ROTATION ON THE BASIS OF THE BELLMAN EQUATION WITH FINAL HORIZON

Skvortsov Y.S.,  Ryndin N.L.,  Amoa A.J. 

UDC 004.4
DOI: 10.26102/2310-6018/2019.24.1.042

  • Abstract
  • List of references
  • About authors

The problem of the study is to determine the optimal plan for multiple periods, which take into account the economy of the object of study in a dynamic structure. As a result, this article describes a dynamic model based on the Bellman equation with a finite horizon. The object of the study is crop rotation. By maximizing the net present, expected current and future returns, the modified Bellman equation provides optimal crop planting solutions. This model takes into account perennial crop rotations with a different set of crops. The Bellman equation is a partial differential equation with initial conditions given for the last time instant for the Bellman function, which expresses the minimum value of the optimization criterion that can be achieved, provided the system evolves from its current state to some final state. Using the Matlab package, a dynamic model of crop rotation was simulated. MATLAB uses the CompEcon toolkit for solving problems of dynamic programming with discrete time or with a discrete variable. Given the final value of the current and expected profits, the problem is solved by repeatedly applying the Bellman equation.

1. Semakhin AM, Batalov I. S. Dynamic programming in solving the problem of optimal placement of electronic components of a control system // Young Scientist. - 2013. - №6. - p. 144-146.

2. Kelbert M. Ya., Sukhov Yu. M. Probability and statistics in examples and problems. T. II: Markov chains as the starting point of the theory of random processes and their applications. - M .: MTSNMO, 2010. - 295 p.

3. Gorban, A. N .; Gorban, Pavel A .; Judge, George. Entropy: Makrovsky orderly approach. Entropy 12, no. 5 (2010), 1145-1193 p.

4. Kormen, T., Leiserson, Ch., Rivest, R., Stein, K. Chapter 15. Dynamic Programming // Algorithms: Construction and Analysis / Ed. I.V. Krasikova. - 2nd ed. - M .: Williams, 2005. - 1296 p.

5. A. V. Bulinsky, A. N. Shiryaev. Theory of random processes - Fizmatlit, 2005

6. Bellman, R. E., Kalaba, R. Dynamic programming and modern control theory. - 1969.

7. Bellman, R.. The theory of the stability of solutions of differential equations. - 1954.

Skvortsov Yuri Sergeevich

Email: skvortsov@arcpris.ru

Voronezh State Technical University

Voronezh, Russian Federation

Ryndin Nikita Lexandrovich

Email: hrimfaxi@icloud.com

Voronezh State Technical University

Voronezh, Russian Federation

Amoa Armel Jeafroi quadio-can

Email: amoa.armel@gmail.com

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: markov model, dynamic programming, bellman equation, crop rotation optimization

For citation: Skvortsov Y.S., Ryndin N.L., Amoa A.J. MODEL OF DYNAMIC CROP ROTATION ON THE BASIS OF THE BELLMAN EQUATION WITH FINAL HORIZON. Modeling, Optimization and Information Technology. 2019;7(1). URL: https://moit.vivt.ru/wp-content/uploads/2019/01/SkvortsovRyndin_1_19_1.pdf DOI: 10.26102/2310-6018/2019.24.1.042 (In Russ).

748

Full text in PDF

Published 31.03.2019