МНОГОМЕТОДНЫЙ ПОДХОД К МОДЕЛИРОВАНИЮ СЛОЖНЫХ СИСТЕМ НА ОСНОВЕ АНАЛИЗА МОНИТОРИНГОВОЙ ИНФОРМАЦИИ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

MULTI-METHOD APPROACH TO THE MODELING OF COMPLEX SYSTEMS BASED ON MONITORING DATA ANALYSIS

L'vovich Y.E.,  Pitolin A.V.,  Sapozhnikov G.P. 

UDC 681.3
DOI: 10.26102/2310-6018/2019.25.2.023

  • Abstract
  • List of references
  • About authors

The article justifies the necessity of building various classes of mathematical models of complex systems as well as the relevance of a multi-method approach to the processing and modeling of monitoring and rating information, due to the variety of management tasks and resource efficiency optimization management of a non-profit educational organization in combination with rating management. The starting points are tentatively reduced sets of input indicators influencing the output indicators of a management unit functioning. It is based on time series forecasting on the base of additive and elementary functions. The dependence of the output performance on the input ones is determined by the regression model with the inclusion of time variables. The transition from a regression model to a neural network model is carried out, to improve the accuracy of forecasting for the purpose of managerial decision making at a certain planning horizon. The transformation procedure of initial time series into statistical samples of their prognostic estimates followed by randomized training sample development is proposed. The paper also demonstrates that the multi-method approach to the modelling provides a solution to a number of tasks concerning complex systems resource efficiency management.

1. Boks Dzh. Analiz vremennykh ryadov. Prognoz i upravlenie / Dzh. Boks, G. Dzhenkis. – Vyp.1. – M: Mir, 1974.

2. Gaskarov D.V. Prognozirovanie tekhnicheskogo sostoyaniya i nadezhnosti radioelektronnoy apparatury / D.V. Gaskarov, T.A. Golinkevich, A.V. Mozgalevskiy. – M.: Sovetskoe radio, 1974. – 224 p.

3. Frolov V.N. Printsipy identifikatsii i upravleniya ob"ektami s neodnorodnymi kharakteristikami / V.N. Frolov, Ya.E. L'vovich. – Voronezh: IPTs «Nauchnaya kniga». – 159 p.

4. Rutkovskaya D. Neyronnye seti, geneticheskie algoritmy i nechetkie sistemy / D. Rutkovskaya, M. Pilin'skiy, L. Rutkovskiy. – M.: Goryachaya liniya. – Telekom, 2013. – 384 p.

5. Osnovy proektirovaniya iskusstvennykh neyronnykh setey: ucheb. Posobie / Nauch.red. Ya.E. L'vovich. – Voronezh: VGTU, 2001. – 105 p.

6. Sobol' I.M. Chislennye metody Monte Karlo / I.M. Sobol'. – M.: Nauka, 1973. – 312 p.

7. Stukach O.V. Programmnyy kompleks Statistica v reshenii zadach upravleniya kachestvom / O.V. Stukach. – Tomsk. Iz-vo Tomskogo politekhnicheskogo universiteta, 2011. – 163 p.

L'vovich Yakov Evseevich
Doctor of Technical Sciences, Professor
Email: office@vivt.ru

Voronezh Institute of High Technologies

Voronezh, Russian Federation

Pitolin Andrey Vladimirovich
Candidate of Technical Sciences, Associate Professor

Voronezh State Technical University

Voronezh, Russian Federation

Sapozhnikov Georgy Pavlovich

Russian New University

Moscow, Russian Federation

Keywords: forecasting, modeling, management, resource efficiency, randomization

For citation: L'vovich Y.E., Pitolin A.V., Sapozhnikov G.P. MULTI-METHOD APPROACH TO THE MODELING OF COMPLEX SYSTEMS BASED ON MONITORING DATA ANALYSIS. Modeling, Optimization and Information Technology. 2019;7(2). URL: https://moit.vivt.ru/wp-content/uploads/2019/05/LvovichSoavtori_2_19_1.pdf DOI: 10.26102/2310-6018/2019.25.2.023 (In Russ).

606

Full text in PDF

Published 30.06.2019