ИССЛЕДОВАНИЕ МЕТОДОВ ИСКУССТВЕННОГО ИНТЕЛЛЕКТА ДЛЯ ПОСТРОЕНИЯ КЛАССИФИКАЦИОННОЙ МОДЕЛИ УСПЕШНОСТИ РЕАЛИЗАЦИИ ТРАНЗАКЦИИ В СЕТИ ОБЩЕКАНАЛЬНОЙ СИГНАЛИЗАЦИИ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

STUDY OF ARTIFICIAL INTELLIGENCE METHODS FOR CONSTRUCTING A CLASSIFICATION MODEL OF SUCCESSFUL TRANSACTION IMPLEMENTATION IN THE SS7 NETWORK

Alexander R.V.,  Palmov S.V.,  Glushak E.V. 

UDC 004.8
DOI: 10.26102/2310-6018/2019.26.3.023

  • Abstract
  • List of references
  • About authors

Telecommunications have a decisive influence on the development of human society. The type of communication can be improved in various ways. Artificial intelligence allows to contribute to the solution of the abovementioned problem. However, there is the problem of choosing the method that is most suitable for solving a specific task in a particular subject area. This is due to the large number of existing artificial intelligence tools, as well as a significant variety of situations that require consideration of certain restrictions and nuances when analyzing them. The authors of the paper conduct an experiment that aimed to simplify the solution of the stated problem when it is necessary to build a classification model that determines the success of a SS7 network transaction implementation in the provision of voice and SMS services in a mobile communication network using transferred mobile subscriber numbers. The capabilities of the five methods are analyzed: decision tree, support vector machines, random forest, neural network and naive Bayes classifier. The classification models generated by the abovementioned methods test for compliance with two requirements: the reliable predictions generation and the results stability. Models quality evaluated by three metrics: F-measure, specificity and standard deviation. The experiment used real depersonalized statistics obtained in the network of a large mobile operator. After carrying out the relevant calculations and comparisons, it was found that the decision tree method usage seems to be the most preferable, since it forms the highest quality classification models.

1. Sharma, Himani & Kumar, Sunil. (2016). A Survey on Decision Tree Algorithms of Classification in Data Mining // International Journal of Science and Research. 2016. Vol. 5. No. 4. – Pp. 2094–2097.

2. Pagariya, Rani & Bartere, Mahip. Review Paper on Artificial Neural Networks // International Journal of Advanced Research in Computer Science. 2013. Vol. 6. No. 6. – Pp. 49–53.

3. Bhavsar, Himani & Panchal, Mahesh. A Review on Support Vector Machine for Data Classification // International Journal of Advanced Research in Computer Engineering & Technology. 2012. Vol. 1. No. 10. – Pp. 185–189

4. Goel, Eesha & Abhilasha, Er. Random Forest: A Review // International Journal of Advanced Research in Computer Engineering & Technology. 2017. Vol. 7. No. 1. – Pp. 251–257.

5. Kaviani1, Pouria & Dhotre, Sunita. Short Survey on Naive Bayes Algorithm // International Journal of Advance Engineering and Research Development. 2017. Vol. 4. No. 11. – Pp. 607–611.

6. Kodati, Sarangam & Vivekanandam, R. Analysis of Heart Disease using in Data Mining Tools Orange and Weka // Global Journal of Computer Science and Technology. 2018. Vol. 18. No. 1. – Pp. 17–21.

7. Roslyakov, A.V. Signaling System no.7. – Russia, Ed. House «Eco-Trendz», 1999, 176 p. (In Russ.)

8. Roslyakov, A.V. SS7: architecture, protocols, application. – Russia, Ed. House «Eco-Trendz», 2008, 320 p. (In Russ.)

9. Hossin, M. & Sulaiman, M.N. A Review on Evaluation Metrics for Data Classification Evaluations// International Journal of Data Mining & Knowledge Management Process. 2015. Vol. 5. No. 2. – Pp. 1–11.

10. Kriukova, A.A. & Palmov, S.V. [Data Mining applicability study for the telecommunications company's customers analysis] // Prikladnaya informatika = Applied Informatics. 2019. Vol.14. №1(79). – Pp. 17–28. (In Russ.)

Alexander Roslyakov Vladimirovich
Doctor of Technical Sciences, Professor
Email: ck-63@elena.by

Povolzhskiy State University of Telecommunications and Informatics

Samara, Russian Federation

Palmov Sergey Vadimovich
Candidate of Technical Sciences, Associate Professor
Email: psvzo@yandex.ru

Volga State University of Telecommunications and Informatics
Samara State Technical University

Samara, Russian Federation

Glushak Elena Vladimirovna
Candidate of Technical Sciences
Email: arosl@mail.ru

Povolzhskiy State University of Telecommunications and Informatics, Samara

Samara, Russian Federation

Keywords: artificial intelligence, telecommunications, f-measure, decision tree, classification model, ss7

For citation: Alexander R.V., Palmov S.V., Glushak E.V. STUDY OF ARTIFICIAL INTELLIGENCE METHODS FOR CONSTRUCTING A CLASSIFICATION MODEL OF SUCCESSFUL TRANSACTION IMPLEMENTATION IN THE SS7 NETWORK. Modeling, Optimization and Information Technology. 2019;7(3). URL: https://moit.vivt.ru/wp-content/uploads/2019/09/RoslyakovSoavtori_3_19_1.pdf DOI: 10.26102/2310-6018/2019.26.3.023 (In Russ).

574

Full text in PDF

Published 30.09.2019