МОДЕЛЬ ПРОЦЕССА УПРАВЛЕНИЯ ГЕНЕТИЧЕСКИМ АЛГОРИТМОМ С ИСПОЛЬЗОВАНИЕМ ИСКУССТВЕННОЙ НЕЙРОННОЙ СЕТИ В ЗАДАЧЕ СТРУКТУРНО ПАРАМЕТРИЧЕСКОГО СИНТЕЗА БОЛЬЩИХ ДИСКРЕТНЫХ СИСТЕМ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

MODEL OF THE PROCESS OF MANAGING A GENETIC ALGORITHM USING AN ARTIFICIAL NEURAL NETWORK BECAUSE OF STRUCTURAL-PARAMETRIC SYNTHESIS OF LARGE DISCRETE SYSTEMS

Petrosov D.A.,  Al saedi mohanad R.G.,  Beletskaya S.Y. 

UDC 519.876.2
DOI: 10.26102/2310-6018/2019.26.3.035

  • Abstract
  • List of references
  • About authors

In intelligent decision support systems aimed at solving the problems of structurally parametric synthesis of models of large discrete systems with a given behavior, based on genetic algorithms, it is often required to increase speed using not only hardware, but also mathematical ones. In this paper, we consider the processes that arise when using an evolutionary procedure consisting of four genetic algorithms adapted to the task of synthesizing under the control of an artificial neural network. Each model that is part of the decision-making block fulfills its function in the task of structural-parametric synthesis of simulation models of large discrete systems. That is, it searches for solutions based on: models of elements that make up the synthesized object; interelement connections; initial parameters of the functioning of the elements; parameters of the elements of the synthesized system, which can change in the synthesized model during its operation. As a control, the use of an artificial neural network is considered, which makes adjustments to the functioning parameters of the operators of the genetic algorithm and (or) the connection of various combinations of evolutionary procedures depending on the convergence of the evolutionary procedure. When creating a process model, modern methodologies IDEF0 and IDEF3 were used, aimed at solving problems of system analysis.

1. Petrosov, D.A. Strukturnyj sintez innovacionnyh agrotekhnologicheskih processov s primeneniem geneticheskih algoritmov [Elektronnyj resurs] /Petrosov D.A., Ignatenko V.A., Petrosova N.V., Zelenina A.N.// Modelirovanie, optimizaciya i informacionnye tekhnologii. 2019. T. 7. № 2 (25). S. 287-300. URL: https://elibrary.ru/download/ elibrary_39197599_45263039.pdf (data obrashcheniya: 11.09.2019)

2. Lomazov, V.A. Evolyucionnaya procedura strukturnogo i parametricheskogo sinteza imitacionnyh modelej sistem dokumentooborota [Tekst] /Lomazov V.A., Mihajlova V.L., Petrosov D.A., El'chaninov D.B.// Nauchnye vedomosti Belgorodskogo gosudarstvennogo universiteta. Seriya: Ekonomika. Informatika. 2013. № 22 (165). S. 204-209.

3. Podlazova, A. V. Geneticheskie algoritmy na primerah resheniya zadach raskroya [Elektronnyj resurs]/ A. V. Podlazova // Problemy upravleniya. 2008. №2. URL: https://cyberleninka.ru/article/n/geneticheskie-algoritmy-naprimerah-resheniya-zadach-raskroya (data obrashcheniya: 11.06.2019)

4. Kanyukov, S.I. Geneticheskij algoritm proektirovaniya osnovnyh perekhodov v SAPR tekhnologicheskih processov kovki valov [Elektronnyj resurs]/ S.I. Kanyukov, A.V. Konovalov // Programmnye produkty i sistemy. 2015. №3 (111) URL: https://cyberleninka.ru/article/n/geneticheskiy-algoritmproektirovaniya-osnovnyh-perehodov-v-sapr-tehnologicheskih-protsessovkovki-valov (data obrashcheniya: 11.06.2019).

5. Naumenko V. V. Primenenie geneticheskogo algoritma dlya resheniya zadachi raspredeleniya resursov v processe vypolneniya administrativnyh reglamentov [Tekst]/ V. V. Naumenko // Molodoj uchenyj. 2014. №4. S. 218-224.

6. Ptushkin, A.I. Algoritm strukturnoj optimizacii tekhnologicheskogo processa pri deficite vremeni na ego vypolnenie [Tekst]/ A.I. Ptushkin , D.V. Reshetnikov, A.S. Kokarev, A.V. Trudov // Fundamental'nye issledovaniya. – 2015. – № 11-5. – S. 918-922.

7. Petrosov, D.A. Imitacionnaya model' upravlyaemogo geneticheskogo algoritma na osnove setej Petri [Tekst]/Petrosov D.A.// Intellektual'nye sistemy v proizvodstve. 2019. T. 17. № 1. S. 63-70

8. Petrosov, D.A. Iskusstvennye nejronnye seti v zadachah upravleniya geneticheskim algoritmom v processe strukturno-parametricheskogo sinteza bol'shih diskretnyh sistem s zadannym povedeniem [Tekst]/Petrosov D.A., Petrosova N.V.// Perspektivy nauki. 2018. № 11 (110). S. 125-130.

Petrosov David Aregovich
Candidate of Technical Sciences, Associate Professor
Email: scorpionss2002@mail.ru

Financial University under the Government of the Russian Federation

Moscow, Russian Federation

Al saedi mohanad Ridha Ganim

Email: muhannadridha1982@gmail.com

Voronezh State Technical University

Voronezh, Russian Federation

Beletskaya Svetlana Yurievna
Doctor of Technical Sciences, Professor
Email: su_bel@mail.ru

Voronezh State Technical University

Voronezh, Russian Federation

Keywords: evolutionary procedures, structural-parametric synthesis, genetic algorithms, artificial neural networks, system analysis, simulation

For citation: Petrosov D.A., Al saedi mohanad R.G., Beletskaya S.Y. MODEL OF THE PROCESS OF MANAGING A GENETIC ALGORITHM USING AN ARTIFICIAL NEURAL NETWORK BECAUSE OF STRUCTURAL-PARAMETRIC SYNTHESIS OF LARGE DISCRETE SYSTEMS. Modeling, Optimization and Information Technology. 2019;7(3). URL: https://moit.vivt.ru/wp-content/uploads/2019/09/PetrosovSoavtori_3_19_1.pdf DOI: 10.26102/2310-6018/2019.26.3.035 (In Russ).

839

Full text in PDF

Published 30.09.2019