РАЗРАБОТКА РЕКОМЕНДАТЕЛЬНОЙ СИСТЕМЫ РАСЧЕТА ПАРАМЕТРОВ БЕСПРОВОДНОЙ СЕТИ СЕНСОРНЫХ КОМПЛЕКСОВ
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

DEVELOPMENT OF A RECOMMENDER SYSTEM FOR PARAMETER CALCULATION IN WIRELESS NETWORK OF SENSOR DEVICES

idDenisov A.V.

UDC 004.42
DOI: 10.26102/2310-6018/2019.27.4.025

  • Abstract
  • List of references
  • About authors

This paper proposes a solution for a relevant scientific and engineering problem of time saving in wireless data transfer network design, based on software units for position calculation of heterogeneous sensor units and mobile robotic devices, sufficiently significant for digital technology advance in agriculture. A recommender software engine AgroWiNet is developed, including additional radio units, enabling deployment of heterogeneous sensor devices and mobile robotic devices network in the work area. Suggestions are given on practical use of the developed software system in agricultural robotic systems, specifically in open ground settings. Today modern repeater networks are designed manually, and sometimes installed in ad-hoc manner, without prior calculations, what entails excessive labor costs on design stage, as well leads to solutions with suboptimal energy-efficiency parameters. The developed recommender system software allows to cut design time of such networks down to a few hours, provides for the most favorable distribution of sparsely installed repeaters few in numbers, as well has superior scalability and energy efficiency.

1. Leon E. Flood Early Warning System by Twitter Using LoRa. Multidisciplinary Digital Publishing Institute Proceedings. 2018;2(19):1213.

2. Cagatan G.K. B. et al. Connectivity analysis of wireless sensor network in two-dimensional plane using Castalia simulator. 2017 IEEE 9th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment and Management (HNICEM). IEEE. 2017:1-8.

3. Lavric A., Popa V. A LoRaWAN: Long range wide area networks study. 2017 International Conference on Electromechanical and Power Systems (SIELMEN). IEEE. 2017:417-420.

4. Barriquello C. H. et al. Performance assessment of a low power wide area network in rural smart grids. 2017 52nd International Universities Power Engineering Conference (UPEC). IEEE, 2017:1-4.

5. Addabbo T. et al. An iot framework for the pervasive monitoring of chemical emissions in industrial plants. 2018 Workshop on Metrology for Industry 4.0 and IoT. IEEE. 2018:269- 273.

6. Hart J., Hartová V. Improvement of monitoring of cattle in outdoor enclosure using IQRF technology. 2018.

7. Shuda J.E., Rix A.J., Booysen M.J. Towards Module-Level Performance and Health Monitoring of Solar PV Plants Using LoRa Wireless Sensor Networks. 2018 IEEE PES/IAS PowerAfrica. IEEE. 2018:172-177.

8. Davcev D. et al. IoT agriculture system based on LoRaWAN. 2018 14th IEEE International Workshop on Factory Communication Systems (WFCS). IEEE. 2018:1-4.

9. Rahim H., Ghazel C., Saidane L.A. An Alternative Data Gathering of the Air Pollutants In the Urban Environment using LoRa and LoRaWAN. 2018 14th International Wireless Communications & Mobile Computing Conference (IWCMC). IEEE. 2018:1237-1242.

10. Swastika A.C., Pramudita R., Hakimi R. IoT-based smart grid system design for smart home. 2017 3rd International Conference on Wireless and Telematics (ICWT). IEEE. 2017:49-53.

11. Hammi B. et al. IoT technologies for smart cities. IET Networks. 2017;7(1):1-13.

12. Morin E. et al. Comparison of the device lifetime in wireless networks for the internet of things. IEEE Access. 2017;5:7097-7114.

13. LoRa Alliance, «LoRa Specification V1.0.2,» Tech. Rep., July 2016.

14. Kirichek R.V. et al. Model networks for Internet of Things and SDN. Information Technology and Telecommunications. 2015;3:17-26.

15. Futahi A., Paramonov A.I. Wireless sensor networks with temporary mobile head nodes. Elektrosvyaz. 2016;9:48-54.

16. Korneeva T.V. Sensor networks systems for monitoring and control. Instruments and Systems: Monitoring, Control, and Diagnostics. 2016;8:28-41.

17. Koucheryavy A.E., Al-Kadami N. The adaptive clustering algorithm for mobile wireless sensor networks. 2015;3:22-26.

18. Andriyanov N.A. Construction of sensor networks based on Bluetooth technology. Radioelectronic technology. 2016;1:13.

19. Zharkov S.N. Mobile wireless sensor network modeling with one sink node. Theory and technique of radio communication. 2015;1:54

20. Wixted A.J. et al. Evaluation of LoRa and LoRaWAN for wireless sensor networks. 2016 IEEE SENSORS. IEEE. 2016:1-3.

21. Ojha T., Misra S., Raghuwanshi N.S. Wireless sensor networks for agriculture: The stateof-the-art in practice and future challenges. Computers and Electronics in Agriculture. 2015;118:66-84.

22. Zhang J. et al. Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. International Journal of Sensor Networks. 2017;23(4):248-257.

23. Zhang Y., He S., Chen J. Data gathering optimization by dynamic sensing and routing in rechargeable sensor networks. IEEE/ACM Transactions on Networking. 2015;24(3):1632- 1646.

24. Qiu T. et al. ROSE: Robustness strategy for scale-free wireless sensor networks. IEEE/ACM Transactions on Networking (TON). 2017;25(5):2944-2959.

25. Sheng Z. et al. Recent advances in industrial wireless sensor networks toward efficient management in IoT. IEEE access. 2015;3:622-637.

26. Fu L. et al. Optimal charging in wireless rechargeable sensor networks. IEEE Transactions on Vehicular Technology. 2015;65(1):278-291.

27. Pan G. et al. Performance analysis and optimization for SWIPT wireless sensor networks. IEEE Transactions on Communications. 2017;65(5):2291-2302.

28. Denisov A., Iakovlev R., Lebedev I. Mathematical and Algorithmic Model for Local Navigation of Mobile Platform and UAV Using Radio Beacons. International Conference on Interactive Collaborative Robotics. Springer, Cham. 2019:53-62.

Denisov Aleksandr Vadimovich

Email: sdenisov93@mail.ru

ORCID |

St. Petersburg Institute for Informatics and Automation of the Russian Academy of Sciences (SPIIRAS)

St. Petersburg, Russian Federation

Keywords: sensor networks, coordinate detection algorithms, repeaters, robotic devices, mapping, distributed systems

For citation: Denisov A.V. DEVELOPMENT OF A RECOMMENDER SYSTEM FOR PARAMETER CALCULATION IN WIRELESS NETWORK OF SENSOR DEVICES. Modeling, Optimization and Information Technology. 2019;7(4). URL: https://moit.vivt.ru/wp-content/uploads/2019/11/Denisov_4_19_1.pdf DOI: 10.26102/2310-6018/2019.27.4.025 (In Russ).

796

Full text in PDF

Published 31.12.2019