Keywords: business intelligence systems, operational-analytical data marts,, associative data model, .
DEVELOPMENT OF A CONCEPTUAL MODEL OF OPERATIONAL - ANALYTICAL DATA MARTS
UDC 004.67
DOI: 10.26102/2310-6018/2019.27.4.002
The storages integrated with analytical systems are focused on dimensional data modeling, which provides quick execution of analytical queries, but has significant drawbacks when working with big data. The article proposes an approach to constructing a conceptual model of operational-analytical data marts, which allows combining the concepts of operational data marts and analytical data marts. Operational data marts are information slices of narrowly focused, thematic information, which designed to solve the problem of operational access to big data sources through the consolidation and ranking of information resources in terms of demand. In contrast to operational data marts that are dependent from sources, analytical data marts are considered as independent data sources created by users in order to provide data structuring for the tasks being solved. The paper provides a comparison of approaches to the construction of analytical queries based on linear queries and associative relationships. The results obtained in this work are used in building a BI cluster on the basis of fast design, analytics, development and implementation of business process models which are performed with using prepared operational-analytical data marts.
1. Emirov N.D., Battalova S.S. Informatsionnye uslugi v sovremennom informatsionnom obshchestve: rol' bibliotek i ikh korporatsiy. Ekonomika i predprinimatel'stvo. 2017;11(88): 894-897.
2. Golovina T.A., Romanchin V.I., Zakirov A.I. Razvitie tekhnologiy biznes - analitiki na osnove kontseptsii Business Intelligence. Izvestiya Tul'skogo gosudarstvennogo universiteta. Ekonomicheskie i yuridicheskie nauki. 2014;5-1: 416-424.
3. Lubenets N. A., Ulitina T. I., Akimova A. O. Sovremennye IT-instrumenty innovatsionnogo razvitiya kompanii. Ekonomicheskie aspekty tekhnologicheskogo razvitiya sovremennoy promyshlennosti. 2017;:105-111.
4. Asadullaev S. Arkhitektury khranilishch dannykh-1. 2009. Dostupno po adresu: https://www.ibm.com/developerworks/ru/library/sabir/axd_1/index.html (data obrashcheniya 10.10.2019 g.).
5. Oreshkov V. I., Paklin N. B. Biznes-analitika: ot dannykh k znaniyam. ID «Piter». 2013
6. Akhrem A.A., Rakhmankulov V.Z., Yuzhanin K.V. O slozhnosti reduktsii modeley mnogomernykh dannykh. Iskusstvennyy intellekt i prinyatie resheniy. 2016;(4): 79-85.
7. Homan J.V. et al. A comparison of the relational database model and the associative database model. Issues in Information Systems. 2009;10(1): 208-213.
8. Moving Towards Real-Time Analytics: All About In-Memory Computing and Self-Service BI. Financial and credit activity: problems of theory and practice. 2019;1(28): 272-278.
9. Zayko T.A., Oleynik A.A., Subbotin S.A. Assotsiativnye pravila v intellektual'nom analize dannykh. Vestnik Natsional'nogo tekhnicheskogo universiteta Khar'kovskiy politekhnicheskiy institut. Seriya: Informatika i modelirovanie. 2013;39(1012).
Keywords: business intelligence systems, operational-analytical data marts,, associative data model, .
For citation: Raevich A.P., Dobronets B.S. DEVELOPMENT OF A CONCEPTUAL MODEL OF OPERATIONAL - ANALYTICAL DATA MARTS. Modeling, Optimization and Information Technology. 2019;7(4). URL: https://moit.vivt.ru/wp-content/uploads/2019/11/RaevichDobronets_4_19_1.pdf DOI: 10.26102/2310-6018/2019.27.4.002 (In Russ).
Published 31.12.2019