To study the effects of toxicants on a living organism and the selection of effective antidotes,
studies are usually carried out in vivo or at least in vitro, which is a very laborious and costly process.
In addition, such studies are not always possible because of ethical considerations. Experiments on living
creatures in the most countries are very strictly regulated by law. To eliminate or at least drastically
reduce the number of in vivo experiments, it is necessary to use a special apparatus of mathematical
modeling. Based on this, the mathematical modeling's technique of the intermolecular interactions
process of cell membrane molecules with toxicants and antidotes to them is proposed in the paper. The
main idea of the work is to study the formation's process of stable bonds of toxicants' molecules and
antidotes with molecules of the cell membrane components , by identifying the active centers of this
interaction. It uses specially created algorithms for constructing the structure of a conglomerate of two
molecules, analysis and evaluation of the formation of a hydrogen bond between them. For this purpose,
systems analysis, quantum chemical calculations, and modular programming are used to calculate the
properties of individual molecules and the conglomerate as a whole. All received information is stored
in specially designed databases. For a more visual presentation of the results, an original scheme for
displaying the signatures of blocked active centers of the cell membrane for the antidotes in question
has been proposed. The method of computer modeling outlined in the article allows a targeted search
for antidotes to a given toxicant by creating a list ranked by the degree of effectiveness of antidotes.
1. Abilova Z.Z., ZHarkih L.I., Alykov N.M. Matematicheskoe modelirovanie vozdejstviya
levomicetina na n-acetilgalaktozamin [Mathematical modeling of the effects of
chloramphenicol on n-acetylgalactosamine]. Ecological systems and devices. 2016;1:32-37
(in Russian).
2. Abilova Z.Z., Zharkih L.I., Alykov N.M. Matematicheskoe modelirovanie processov
vozdejstviya levomicetina na strukturnye komponenty kletochnoj membrany
[Mathematical modeling of the effects of chloramphenicol on the structural components of
the cell membrane]. Ecological systems and devices. 2016;5:15-26 (in Russian).
3. Abilova Z.Z., Ramazanova K.I., Zharkih L.I., Alykov N.M. Matematicheskoe
modelirovanie vozdejstviya flutamida i levomicetina na fosfolipid [Mathematical modeling
of the effects of flutamide and chloramphenicol on phospholipid]. Ecological systems and
devices. 2015;5:21-27 (in Russian).
4. Alikberova L.YU., Savinkina E.V., Davydova M.N. Osnovy stroeniya veshchestva.
Metodicheskoe posobie [Fundamentals of the structure of matter. Toolkit]. M.: MITHT.
2004. [Electronic resource]. (In Russ.) Available at: http://alhimik.ru/stroenie (accessed
.2019).
5. Bejder R. Atomy v molekulah. Kvantovaya teoriya [Atoms in the molecules. Quantum
theory]. M.: Mir. 2001:532 (in Russian).
6. Zharkih L.I., Azhmuhamedov I.M. Algoritm opredeleniya aktivnyh centrov
mezhmolekulyarnogo vzaimodejstviya [Algorithm for determining active centers of
intermolecular interaction]. Caspian Journal: Management and High Technologies.
2018;1(41):144-151 (in Russian).
7. Zatolokina M.A., Pol'skoj V.S., Zueva S.V. i dr. Matematicheskoe modelirovanie i
prognozirovanie – kak metody nauchnogo poznaniya v medicine i biologii [Mathematical
modeling and forecasting - as methods of scientific knowledge in medicine and biology]. International Journal of Experimental Education. 2015;124:539-543 (in Russian).
8. Zacepina G.N. Svojstva i struktura vody [Properties and structure of water]. M.: MGU,
1974:168 (in Russian).
9. Zefirov N.S., Kuchanov S.I. (red.) Primenenie teorii grafov v himii [Application of graph
theory in chemistry]. Novosibirsk: Nauka. 1988:306 (in Russian).
10. Kolpak E.P., Gorbunova E.A., Balykina YU.E., Gasratova N.A. Matematicheskaya model'
odinochnoj populyacii na bilokal'nom areale [A mathematical model of a single population
on a bilocal area]. Young scientist. 2014;1:28-33 (in Russian).
11. Kuk D. Kvantovaya teoriya molekulyarnyh sistem. Edinyj podhod [Quantum theory of
molecular systems. Single approach]. Transl. From English. M.: Intellect, 2012:256.
12. Lar'kina M.S., Saprykina E.V., Kadyrova T.V., Ermilova T.V., Peshkina R.V.
Antioksidantnaya aktivnost' ekstrakta vasil'ka sherohovatogo pri toksicheskom porazhenii
pecheni krys [Antioxidant activity of the cornflower rough extract in rat liver toxicity].
Questions of biological, medical and pharmaceutical chemistry. 2011;8:25-28 (in Russian).
13. Minkin V.I., Simkin B.YA., Minyaev R.M. Teoriya stroeniya molekul [Theory of the
structure of molecules]. M.: Vysshaya shkola. 1979:408 (in Russian).
14. Ovchinnikov YU.A. Bioorganicheskaya himiya [Bioorganic chemistry]. M.: Education.
1987:816 (in Russian).
15. Pohoden'ko-CHudakova I.O., Vil'kickaya K.V. Makroskopicheskie izmeneniya posle
hirurgicheskogo lecheniya n. alveolaris inferior, pervichno podvergnutogo toksicheskomu
vozdejstviyu [Macroscopic changes after surgical treatment n. alveolaris inferior, primarily
exposed to toxic effects]. Vyatka Medical Bulletin. 2013;4:17-19 (in Russian).
16. . Ryzhko I.V., Mishan'kin B.N., Curaeva R.I., Shcherbanyuk A.I., Anisimov B.I.
Infekcionno-toksicheskaya model' chumy myshej [Infectious-toxic model of mouse
plague]. Journal of Microbiology, Epidemiology and Immunobiology. 2009;3:46-50 (in
Russian).
17. Strajer L. Biohimiya [Biochemistry]. Transl. From English. M.: Mir. 1984;1:232 (in
Russian).
18. Trizno N.N., Galimzyanov H.M., Nikulina D.M., Spiridonova V.A., Golubkina E.V.,
Dyukareva O.S., Trizno M.N. Izmeneniya gemostaziologicheskogo profilya krys pri
hronicheskom vozdejstvii serovodorodsoderzhashchego gaza i vozmozhnosti ih korrekcii
[Changes in the hemostasiology profile of rats during chronic exposure to hydrogen sulfidecontaining gas and the possibility of their correction]. Astrakhan Medical Journal.
2017;12(2):75-81 (in Russian).
19. Trizno N.N., Golubkina E.V., Trizno M.N., Dyukareva O.S. Sostoyanie sistemy gemostaza
u krys posle hronicheskoj intoksikacii serovodorodsoderzhashchim gazom [The state of the
hemostatic system in rats after chronic intoxication with hydrogen sulfide-containing gas].
Modern problems of science and education. 2017;4:75 (in Russian).
20. Usov K.I., Gus'kova T.A., Yushkov G.G. Rol' piridoksina gidrohlorida v razvitii
tolerantnosti organizma zhivotnyh k toksicheskomu dejstviyu izoniazida [The role of
pyridoxine hydrochloride in the development of animal organism tolerance to the toxic
effect of isoniazid]. Tuberculosis and lung diseases. 2018;96(6):51-57 (in Russian).
21. Enciklopediya Krugosvet [Encyclopedia Krugosvet]. [Electronic resource]. (In Russ.)
Available at:
https://www.krugosvet.ru/enc/nauka_i_tehnika/himiya/vodorodnaya_svyaz.html (accessed
09.05.2019).
22. ChemOffice Professional [Electronic resource]. URL:
https://www.perkinelmer.com/Product/chemoffice-professional-chemofficepro (accessed
09.12.2019).
23. Kleandrova V.V., Luan F., González-Díaz H., Ruso J. M., Melo A., SpeckPlanche A.,
Cordeiro M.N. Computational ecotoxicology: simultaneous prediction of ecotoxic effects
of nanoparticles under different experimental conditions. Environment International.
2014;73:288-294.
24. Luan F., Kleandrova V. ., González-Díaz H., Ruso J.M., Melo A., Speck-Planche A.,
Cordeiro M.N.D.S. Computer-aided nanotoxicology: assessing cytotoxicity of
nanoparticles under diverse experimental conditions by using a novel QSTR perturbation
approach. Nanoscale. 2014;6(18):10623-10630.
25. Singh K.P., Gupta S., Ghorbanzadeh M., Fatemi M.H., Karimpour M., Puzyn T., Li J.H.
Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC
Advances. 2014;4(26):213-215.
26. The General Atomic and Molecular Electronic Structure System. [Electronic resource].
Available at: www.msg.chem.iastate.edu/gamess/index.html (accessed 09.12.2019).