Keywords: recognition, speech, language, method
THE PROBLEMS OF RECOGNITION OF SPEECH SIGNALS
UDC 007.52
DOI:
In this paper, the analysis of the main issues associated with recognition of speech signals is given. The classification of systems of recognition, methods of speech recognition is presented.
1. Choporov O.N., Chupeev A.N., Bregueda S.Yu. Analysis methods the significance of indicators in the classification and prognostic modeling / Bulletin of the Voronezh State technical university. 2008. T. 4. No. 9. P. 92-94.
2. Azarova E.S. Signal Filtering Methods / Successes of the Modern natural sciences. 2011. No. 7. P. 64-65.
3. Sviridov V.I. The use of wavelet transforms in processing digital signals / Advances in modern science. 2012. № 6.P. 110-111.
4. Goncharova N.P. Application of data approximation methods / The successes of modern science. 2011. No. 7. P. 97a.
5. Golovinov S.O., Mironchenko S.G., Schepilov E.V., Preobrazhensky A.P. Digital signal processing / Bulletin of Voronezh Institute of High Technologies. 2009. No. 4. P. 64.
6. Korchagin S.V. Development of a signal analysis subsystem with interference / The successes of modern science. 2011. No. 7. P. 130.
7. Zavyalov D.V. On the application of information technology / Modern high technology. 2013. No. 8-1. S. 71-72.
8. Kulneva E.Yu. Information security issues in the transmission of communication channels / Modern high technology. 2013. No. 8-1. S. 73.
9. Klenyaeva G.V., Preobrazhensky A.P. Contemporary issues speech acoustics and building automatic systems speech recognition / Bulletin of the Voronezh Institute of High technology. 2007. T. 1. No. 2-1. S. 71.
10. Rodionova K.Yew. Using wavelet transforms for Digital Signal Processing / High-tech technologies. 2013. No. 8-1. S. 75.
11. Vostrikova O.S. Features of the development of the analysis subsystem signals with various interferences / In the world of scientific discoveries. 2010. No. 4-3. S. 143-144.
12. Tyshkevich OV Practical implementation of the research algorithm signals based on artificial intelligence methods / In the world scientific discoveries. 2010. No. 4-4. S. 37-39.
13. Mozgovoy A.A. Problems of using hidden Markov models in handwriting recognition / In the world of scientific discoveries. 2013. No. 6 (42). S. 186-198.
14. Kozlova N.A. Creation of a subsystem of teaching the Chinese language / Modern studies of social problems. 2010. No 2. S. 93- 94.
15. Preobrazhensky Yu.P. Evaluation of the effectiveness of the system intellectual decision support / Bulletin Voronezh Institute of High Technologies. 2009. No. 5. P. 116-119.
16. Mozgovoy A.A. Handwriting recognition of text characters, entered into mobile devices / Bulletin of Voronezh Institute of High Technologies. 2011. No. 8. P. 48-50.
17. Preobrazhensky Yu.P., Ermachenko A.S. Comparative analysis search algorithms for text fragments / Bulletin of Voronezh Institute of High Technologies. 2010. No. 7. P. 76-78.
18. Tyshkevich OV, Preobrazhensky A.P. Algorithm implementation signal studies based on artificial methods intelligence / Bulletin of the Voronezh Institute of High Technologies. 2009. No. 5. S. 199-204.
19. Fedorinova N.V., Preobrazhensky A.P. Study corrective ability of codes / Bulletin of Voronezh Institute of High Technologies. 2008. No. 3. S. 094-097.
20. Ermolova VV, Preobrazhensky Yu.P. Construction Methodology semantic object model / Bulletin of the Voronezh Institute high tech. 2012. No. 9. P. 87-90.
21. Zyablov E.L., Preobrazhensky Yu.P. Markov adoption processes solutions of the first type with several absorbing states / Bulletin of the Voronezh Institute of High Technologies. 2010. No. 6. S. 68-71.
22. Zazulin A.V., Preobrazhensky Yu.P. Construction Features semantic models of the subject area Bulletin of Voronezh Institute of High Technologies. 2008. No. 3. S. 026-028.
23. Preobrazhensky Yu.P. Development of methods for formalizing tasks on basis of a semantic domain model / Bulletin Voronezh Institute of High Technologies. 2008. No. 3. S. 075-077.
24. Kulneva I.Yu., Gashchenko I.A. Characteristics of wavelet transform when solving signal processing problems / Bulletin Voronezh Institute of High Technologies. 2013. No. 10. P. 149- 152.
25. Preobrazhensky A.P. Analysis of coding methods of different types Information / Bulletin of the Voronezh Institute of High technology. 2013. No. 10. P. 74-77.
26. Sviridov V.I. The main characteristics of recognition methods Voices / Modeling, Optimization and Information technologies. 2013. No. 2. P. 4.
27. http://www.speechpro.ru/technologies/recognition
28. http://www.slideshare.net/VictorOsetrov/2012-22967611
29. Benesty J., Sondhi M., Huang Y. (eds.) Springer Handbook of Speech Processing. Springer, 2008, 1176 p.
30. Lobanov B.M., Tsirulnik L.I. Computer synthesis and speech cloning. Minsk: Belarusian Science, 2008, 344 p.
Keywords: recognition, speech, language, method
For citation: Verchenko G.I. THE PROBLEMS OF RECOGNITION OF SPEECH SIGNALS. Modeling, Optimization and Information Technology. 2013;1(3). URL: https://moit.vivt.ru/wp-content/uploads/2014/01/Verchenko_3_13_1.pdf DOI: (In Russ).
Published 30.09.2013