Имитационное моделирование эпидемий: агентный подход
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Simulation of epidemics: agent-based approach

idAgeeva A.F.

UDC 004.94, 616.9
DOI: 10.26102/2310-6018/2020.30.3.030

  • Abstract
  • List of references
  • About authors

The consequences of the epidemics can be extremely negative, causing significant social and economic losses. The perspectivity of using agent-based models for these purposes are substantiated using agent-based models of epidemics developed by foreign researchers as examples. An analysis of the architecture of agent-based models of epidemics is carried out, which allows determining the key components for modeling epidemic processes. The advantages of the agent-based approach of simulation are identified, which allow modeling the dynamics of the infectious diseases spread in a heterogeneous synthetic population as close to real society as possible, as well as reproducing numbers of patterns and mechanisms of transmission of specific contagious diseases, taking into account demographic, socio-economic and spatial factors. Applying the agent-based approach provides an opportunity to study the progression of epidemic and infectious processes at a micro-level, as well as run scenarios of epidemic outbreaks, test varied strategies for controlling the epidemic, and assess the impact of multicomponent intervention strategies on the epidemic dynamics.

1. Hackl J., Dubernet T. Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models. Future Internet. 2019;11(4):92. DOI:10.3390/fi11040092

2. Mao L. Modeling triple-diffusions of infectious diseases, information, and preventive behaviors through a metropolitan social network – An agent-based simulation. Applied Geography. 2014;50:31-39.

3. Perez L., Dragicevic S. An agent-based approach for modeling dynamics of contagious disease spread. International Journal of Health Geographics. 2009;8(50). Available at: https://doi.org/10.1186/1476-072X-8-50

4. Crooks А. T., Hailegiorgis F. B. An agent-based modeling approach applied to the spread of cholera. Environmental Modelling and Software. 2014;62:164-177.

5. Adiga A., Chu S. Disparities in spread and control of influenza in slums of Delhi: findings from an agent-based modelling study. BMJ Open. 2018;8(1). e017353. DOI: 10.1136/bmjopen-2017-017353

6. Putro U.S., Novani S. et. al. Searching for effective policies to prevent bird flu pandemic in Bandung city using agent‐based simulation. Systems Research and Behavioral Science.. 2008;25:663-673.

7. Alam S., Meyer R., Norling E.A model for HIV spread in a South African village. Conference Paper. Multi-Agent-Based Simulation IX. MABS 2008. Estoril, Portugal. May 12-13, 2008:33-45.

8. Burke D.S., Epstein J.M. et al. Individual-based Computational Modeling of Smallpox Epidemic Control Strategies. Academic Emergency Medicine. 2006;13(11):1142-1149.

9. Laskowski M, Demianyk BC, Witt J, Mukhi SN, Friesen MR, McLeodRD. Agent-based modeling of the spread of influenza-like illness in an emergency department: A simulation study. IEEE Trans InfTechnol Biomed. 2011;15(6):877–889.

10. Hunter E., Namee B. M., Kelleher J. An open-data-driven agent-based model to simulate infectious disease outbreaks. PLOS One. 2018;14(1): e0211245.

11. Aleman D. M., Wibisono T. G. A Nonhomogeneous Agent-Based Simulation Approach to Modeling the Spread of Disease in a Pandemic Outbreak. Interfaces. 2011;41(3):301–315. DOI 10.1287/inte.1100.0550

12. Fŕıas-Martınez E., Williamson G., F ́ ŕıas-Martınez ́ V. An Agent-Based Model of Epidemic Spread using Human Mobility and Social Network Information. In Proceedings of the 3rd International Conference on Social Computing. SocialCom’11. Boston, MA, USA. 9–11 October, 2011:49–56.

13. Khalil K.M., Abdel-Aziz M., Nazmy T.T., Salem A. M. An Agent-Based Modeling for Pandemic Influenza in Egypt. 7th International Conference on Informatics and Systems, INFOS 2010. Cairo, Egypt. 28-30 March, 2010. Available at: https://arxiv.org/ftp/arxiv/papers/1001/1001.5275.pdf

14. Rhee М. An agent-based approach to HIV/AIDS epidemic modeling: a case study of Papua New Guinea. Master of Science Thesis. Massachusetts Institute of Technology. 2006.

15. Venkatramanan S., Lewis B., Chen J., Higdon D., Vullikanti A., Marathe M. Using datadriven agent-based models for forecasting emerging infectious diseases. Epidemics. 2018; 22:43-49.

16. Marini M., Brunner C., Chokani N., Abhari R.S. Enhancing response preparedness to influenza epidemics: Agent-based study of 2050 influenza season in Switzerland. Simulation Modelling Practice and Theory. 2020;103. 102091. DOI: 10.1016/j.simpat.2020.102091

17. Marini M., Chokani N., Abhari R.S. COVID-19 Epidemic in Switzerland: Growth Prediction and Containment Strategy Using Artificial Intelligence and Big Data. Preprint. 2020. DOI: 10.1101/2020.03.30.20047472

18. Saravanan M., Karthikeyan P., Arathi A., Kiruthika M, Suganya S. Mobile agent-based approach for modeling the epidemics of communicable diseases. Conference Paper. International Conference on Advances in Social Networks Analysis and Mining: Niagara, Ontario, CAN. 25-29 August, 2013: 16-20.

19. Mniszewski S.M., Del Valle S.Y., Stroud P.D., Riese J.M., Sydoriak S.J. EpiSimS Simulation of a Multi-Component Strategy for Pandemic Influenza. Proceedings of the 2008 Spring simulation multi-conference. Ottawa, Canada. April 14-17, 2008: 556-563.

20. Arduin, H., Domenech de Cellès, M., Guillemot, D. et al. An agent-based model simulation of influenza interactions at the host level: insight into the influenza-related burden of pneumococcal infections. BMC Infectious Diseases. 2017;17(382). Available at: https://bmcinfectdis.biomedcentral.com/articles/10.1186/s12879-017-2464-z

Ageeva Alina F.
PhD
Email: ageevaalina@yandex.ru

ORCID |

Central Economics and Mathematics Institute of the Russian Academy of Sciences

Moscow, Russian Federation

Keywords: agent-based modeling, computational epidemiology, agent-based models of the epidemic spread, modeling

For citation: Ageeva A.F. Simulation of epidemics: agent-based approach. Modeling, Optimization and Information Technology. 2020;8(3). URL: https://moit.vivt.ru/wp-content/uploads/2020/08/Ageeva_3_20_1.pdf DOI: 10.26102/2310-6018/2020.30.3.030 (In Russ).

1228

Full text in PDF

Published 30.09.2020