Экспериментальное исследование влияния фокусировки оптической системы микроскопа на текстурные характеристики изображений ядер клеток костного мозга
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

An experimental study of the effect of focusing the optical system of a microscope on the textural characteristics of the images of the bone marrow cells nuclei

idPronichev A.N., idPolyakov E.V., idDmitrieva V.V., Kozlov V.S. 

UDC 004.932.2
DOI: 10.26102/2310-6018/2020.31.4.003

  • Abstract
  • List of references
  • About authors

This work relates to the direction of automation of medical diagnostics using computer microscopy. The effect of focusing a microscope on the textural characteristics of chromatin images of the nuclei of bone marrow cells in the computer microscopy system when solving diagnostic problems in oncomorphology for the recognition of malignant tumors is investigated. These questions are of particular importance when solving the problem of analyzing images of low-contrast objects-chromatin of the nucleus of bone marrow cells in the diagnosis of dangerous oncological diseases of the blood system-acute leukemia. During the experiment, bone marrow preparations from patients with acute lymphoblastic leukemia were used as test samples. The preparations were provided by the laboratory of hematopoiesis immunology of the N.N. Blokhin National Medical Research Center of Oncology. The results of the experiment among the characteristics of images of the structure of the chromatin of the nuclei of bone marrow cells revealed the high sensitivity of the focusing optical system of the microscope texture characteristic «moment of inertia» of the red components R of RGB color model. Practical recommendations are given for developers of automated systems on the use of the texture analysis apparatus in the design of cancer diagnostics systems based on microscopic methods of studying samples of biological materials.

1. Nair P.A., Roy R.M. Automated Detection of Leukaemia Based on Microscopic Images- A Review. International Journal of Innovative Science and Research Technology. 2017;2(12): 290-293.

2. Amin M.M., Kermani S., Talebi A., Oghli M.G. Recognition of acute lymphoblastic leukemia cells in microscopic images using K-means clustering and support vector machine classifier. Journal of medical signals and sensors. 2015;5(1):49-58.

3. Nikitaev V.G., Nagornov O.V., Pronichev A.N., Polyakov E.V., Dmitrieva V.V. Model of image sensor signal correction in the computer microscopy system. Journal of Physics: Conference Series. 2019;1205(1):012041. Available from: doi:10.1088/1742-6596/1205/1/012041.

4. Nikitaev V.G., Nagornov O.V., Pronichev A.N., Polyakov E.V., Dmitrieva V.V. Method for optical radiation sensor signal irregularity correction in the computer microscopy system. Journal of Physics: Conference Series. 2019;1189(1):012026. Доступно по: doi:10.1088/1742-6596/1189/1/012026.

5. Nikitaev V.G., Pronichev A.N., Polyakov E.V., Dmitrieva V.V. Method of image sensor signal low-contrast objects correction in computer microscopy systems in oncological diagnostics. Patent RU 2712941 C1 03.02.2020 (In Russ).

6. He C., Li X., Yu Y., Ye Z, Kang H. Microscope images automatic focus algorithm based on eightneighborhood operator and least square planar fitting. Optik - International Journal for Light and Electron Optics.2020;206:164232. Available from: doi:10.1016/j.ijleo.2020.164232.

7. Díaz G., Manzanera A. Automatic analysis of microscopic images in hematological cytology applications. In: Gonz´alez F.A., Romero E.(eds.) Biomedical Image Analysis and Machine Learning Technologies: Applications and Techniques. 2009;978:1605669564. Available from: doi:10.4018/978-1-60566-956-4.ch008.

8. Mohapatra S., Patra D., Satpathy S. Automated leukemia detection in blood microscopic images using statistical texture analysis. In: Proceedings of the 2011 International Conference on Communication, Computing & Security. ICCCS 2011, Odisha, India, February 12-14. 2011:184-187. Available from: doi:10.1145/1947940.1947980.

9. Bodzas A., Kodytek P., Zidek J. Automated detection of acute lymphoblastic leukemia from microscopic images based on human visual perception. Frontiers in Bioengineering and Biotechnology.2020;8:1005. Available from: doi:10.3389/fbioe.2020.01005.

10. Mohammed Z.F., Abdulla A.A. An efficient CAD system for ALL cell identification from microscopic blood images. Multimedia Tools and Applications.2020:1-14. Available from: doi:10.1007/s11042-020-10066-6.

Pronichev Aleksander Nikolaevich
Phd In Engineering, Associate Professor

ORCID |

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Moscow, Russian Federation

Polyakov Evgeniy Valerianovich

ORCID |

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Moscow, Russian Federation

Dmitrieva Valentina Victorovna
Phd In Engineering, Associate Professor

ORCID |

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Moscow, Russian Federation

Kozlov Vladimir Sergeevich

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Moscow, Russian Federation

Keywords: digital image processing, computer microscopy, texture analysis, automatic focusing, acute leukemia diagnosis

For citation: Pronichev A.N., Polyakov E.V., Dmitrieva V.V., Kozlov V.S. An experimental study of the effect of focusing the optical system of a microscope on the textural characteristics of the images of the bone marrow cells nuclei. Modeling, Optimization and Information Technology. 2020;8(4). URL: https://moitvivt.ru/ru/journal/pdf?id=849 DOI: 10.26102/2310-6018/2020.31.4.003 (In Russ).

603

Full text in PDF

Published 31.12.2020