Восходящий синтаксический анализ текстов на естественном языке
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Bottom-up syntax analysis for natural language texts

idBershadsky A.M., idGudkov P.A., idPodmarkova E.M.

UDC 004.02, 004.822
DOI: 10.26102/2310-6018/2021.32.1.001

  • Abstract
  • List of references
  • About authors

The need to automate the decision-making process on legal issues in various fields of human activity determines the relevance of this work. In this regard, this article is aimed at disclosing an approach to organizing the process of parsing texts in natural language for the automatic construction of a semantic network corresponding to the given input documents. The subject area is the field of legal information. The approach proposed by the authors opens up wide possibilities for the semantic analysis of legal documents and their comparison with each other. The article discusses the organization of the process of bottom-up parsing natural language texts for the further automatic building a semantic network. The authors propose the text parsing algorithm. Its results are applicable for the further formation of the knowledge base on the available texts of legal documents. Semantic networks are supposed to be used as a model for representing knowledge, which opens up broad prospects for the automation of legal information processing. In addition to solving the problems of making decisions on legal issues that are often encountered in practice, the considered approach will automate the solution of such a time-consuming task as the automation of the legal examination of regulatory legal acts. The implementation of this procedure is necessary in order for the adopted regulatory legal acts to comply with the principles of admissibility and legality of their inclusion in the current system of law.

1. Боярский К.К. Введение в компьютерную лингвистику: учебное пособие. – СПб: НИУ ИТМО, 2013.

2. Barseghyan A.A., Kupriyanov M.S., Cold I.I., Tess M.D., Elizarov S.I. Analysis of data and processes: textbook manual. – 3rd ed., Rev. and add. – SPb .: BHV-Petersburg, 2009.

3. Rakhvalova D.O., Kurcheeva G.I., Rakhvalova M.N., Bakaev M.A. Revealing corruption factors in normative acts by crowd intelligence methods. State and citizens in the electronic environment (Proceedings of the XXII International Joint Scientific Conference "The Internet and Modern Society", IMS-2019, St. Petersburg, June 19-22, 2019 Collection of scientific papers). – SPb: ITMO University, 2019(3):66-77. DOI: 10.17586/2541-979X-2019-3-66-77.

4. 4. Pirbudagova D.Sh. Legal examination of regulatory legal acts: textbook manual / ed. Pirbudagova D.Sh. 2nd ed., Rev. and add. Makhachkala: DSU Publishing House, 2017.

5. Bolshakova E.I., Klyshinsky E.S., Lande D.V., Noskov A.A., Peskova O.V., Yagunova E.V. Automatic processing of texts in natural language and computational linguistics: textbook manual. – M .: MIEM, 2011.

6. Batura T.V. Mathematical linguistics and automatic text processing: textbook manual. – Novosibirsk: RITs NSU, 2016.

7. Russell S., Norvig P. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010

8. Feigenbaum E., Avron Barr. The Handbook of Artificial Intelligence, Volume III. Addison-Wesley, 1986.

9. Gudkov P.A., Podmar'kova E.M. Model of knowledge representation in the field of legal information. Izvestia of higher educational institutions. Volga region. Technical science. 2020;3(55):17-25. DOI: 10.21685/2072-3059-2020-3-2.

Bershadsky Alexander Moiseevich
Doctor of Technical Science, Professor
Email: bam@pnzgu.ru

ORCID |

Penza State University

Penza, Russian Federation

Gudkov Pavel Anatolievich
PhD in Engineering Science, Associate Professor
Email: p.a.gudkov@gmail.com

ORCID |

Penza State University

Penza, Russian Federation

Podmarkova Ekaterina Michailovna
Phd In Engineering, Associate Professor
Email: alpha-and-amega@yandex.ru

ORCID |

Penza State University

Penza, Russian Federation

Keywords: syntax analysis, legal papers, bottom-up parsing, token concatenation, text analysis, natural language, semantic network, algorithm

For citation: Bershadsky A.M., Gudkov P.A., Podmarkova E.M. Bottom-up syntax analysis for natural language texts. Modeling, Optimization and Information Technology. 2021;9(1). URL: https://moitvivt.ru/ru/journal/pdf?id=902 DOI: 10.26102/2310-6018/2021.32.1.001 (In Russ).

799

Full text in PDF

Published 31.03.2021