Применение популяционных алгоритмов в задачах много-критериальной оптимизации характеристик электрических фильтров
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Application of population algorithms in the problems of multiobjective optimization of electrical filters characteristics

Smirnov A.V. 

UDC УДК 621.372
DOI: 10.26102/2310-6018/2021.34.3.015

  • Abstract
  • List of references
  • About authors

Population algorithms enable simultaneously search many elements of approximation of Pareto optimal decisions set and hereupon provide large advantage in consumption of time compare to scalar goal function method that found a single decision in the search cycle. The capability of open-source platform PlatEMO for solving of problems of multiobjective optimization of electrical filters characteristics was investigated in this work. Experience has shown that for two-objectives optimization problems only 6 algorithms of 71 provided good results. Approximations of Pareto set found by these algorithms were better than approximation found by scalar goal function method. Comparison was carried out by means of Coverage indicator that estimates the part of the first approximation elements dominated by the second approximation elements. For three-objectives optimization problems only two algorithms provided acceptable results. In this case approximations of Pareto set found by population algorithms were worse than that found by scalar goal function method. The conclusion was made that a rational method may consist of application of population algorithm for the solving of several two-objective optimization problems with constrains on other objectives and successive aggregation of found subsets.

1. 1. Gutkin L.S. Optimizatsiya radioelektronnykh ustroistv po sovokupnosti pokazatelei kachestva. Moscow: Sovetskoe Radio, 1975. 368 p. (In Russ.)

2. 2. Chernorutskiy I.G. Metody optimizatsii v teorii upravleniia. S-Peterburg: Piter, 2004. 256 p. (In Russ.)

3. 3. Jasbir S.A. Introduction to optimum design. 4-th Edition. Elsevier, 2017. 670 p.

4. 4. Karpenko A.P., Semenihin A.S., Mitina E.V. Review: population methods of Pareto set approximation in multi-objective optimization problem. Science and education. Electronic scientific and technical periodical. 2012;(4). (In Russ.) Available at: http://technomag.edu.ru/en/doc/363023.html. (accessed 28.07.2021).

5. 5. Smirnov A.V. Method of searching for optimal gain-frequency characteristics ap-proximations with Chebyshev rational functions. J. Radio Electronics [electronic jour-nal]. 2018;(3). (In Russ.) Available at: http://jre.cplire.ru/jre/mar18/7/text.pdf. (ac-cessed 28.07.2021).

6. 6. Smirnov A.V. Method of simultaneous optimization of radio devices performance in frequency and time domain. Russian Technological Journal. 2018;6(6):13–27. Avail-able at: https://rtj.mirea.ru/upload/medialibrary/f84/RTZH_2018_6_13_27.pdf. (in Russ.) DOI: 10.32362/2500-316X-2018-6-6-13-27. (accessed 28.07.2021).

7. 7. Smirnov A.V. Multiobjective optimization of bandpass filters characteristics using heuristic algorithm. Modeling, optimization and information technologies. 2019;7(1(24)):115-126. (in Russ.) Available at: https://moitvivt.ru/ru/journal/article?id=559. DOI: 10.26102/2310-6018/2019.24.1.023 (accessed 28.07.2021).

8. 8. Smirnov A.V. Optimization of digital filters performances simultaneously in fre-quency and time domains. Russian Technological Journal. 2020;8(6):63-77. (in Russ.) Available at: https://www.rtj-mirea.ru/jour/article/view/259. DOI: https://doi.org/10.32362/2500-316X-2020-8-6-63-77 (in Russ.) (accessed 28.07.2021).

9. 9. Pruvost G., Derbel B., Liefooghe A., Li K., Zhang Q. On the Combined Impact of Population Size and Sub-problem Selection in MOEA/D. Препринт. 2020. Доступно по: https://arxiv.org/pdf/2004.06961 (дата обращения: 28.07.2021).

10. 10. Pelegrinaa G.D., Attuxb R., Duarte L.T. Application of multi-objective optimization to blind source separation. Preprint. 2020. Available at: https://arxiv.org/pdf/2002.02241 (accessed 28.07.2021).

11. 11. Tian Y., Cheng R., Zhang X., Jin Y. PlatEMO: A MATLAB Platform for Evolutionary Multi-Objective Optimization. IEEE Computational Intelligence Magazine, 2017 ;12(4): 73-87.

12. 12. Groshev S.V, Karpenko A.P., Sabitov D.R., Shibitov I.A. The PARETO RATING Software System for the Pareto-approximation Quality Assessment in Multicriteria Optimization Problem. Science and education. Electronic scientific and technical periodical. 2014;(7). (in Russ.) Available at: https://cyberleninka.ru/article/n/programmnaya-sistema-pareto-rating-dlya-otsenki-kachestva-pareto-approksimatsii-v-zadache-mnogokriterialnoy-optimizatsii. DOI: 10.7463/0714.0720253 (accessed 28.07.2021).

Smirnov Alexander Vital'evich
Kandidat technicheskich nauk, Dotsent
Email: av_smirnov@mirea.ru

MIREA - Russian Technological University

Moscow, Russian Rederation

Keywords: pareto-optimality, population algorithm, scalarization, decomposition, dominance, gain-frequency response, phase-frequency response

For citation: Smirnov A.V. Application of population algorithms in the problems of multiobjective optimization of electrical filters characteristics. Modeling, Optimization and Information Technology. 2021;9(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1027 DOI: 10.26102/2310-6018/2021.34.3.015 (In Russ).

668

Full text in PDF

Received 01.08.2021

Revised 16.09.2021

Accepted 05.10.2021

Published 30.09.2021