Keywords: agricultural robots, UAV, human-machine interface, quality assessment criteria, group interaction of robots, spot farming
Criteria for assessing quality of human-machine interface of a heterogeneous group of agricultural robots
UDC 004.5
DOI: 10.26102/2310-6018/2021.34.3.027
The paper discusses existing solutions in the field of human-machine interfaces to ensure group interaction of ground robots and unmanned aerial vehicles when performing tasks in agriculture and spot farming. Various aspects of the interaction of heterogeneous agricultural robots, namely, unmanned aerial vehicles and ground mobile platforms, are considered using the example of a scenario of automated point fertilization on plantations of columnar apple trees. The criteria for assessing the quality of the human-machine interface for the formulation and implementation of group tasks of agricultural robotics are determined. The most effective of them are highlighted: the average time required for a user to solve a problem using the KLM-GOMS method, an assessment of the system complexity by the method of T. Comber and J. Maltby, the correctness of the task, the frequency of successful completion of the task, the time it takes to complete the task, the degree of awareness of the situation, the number of control actions, the accuracy of the diagnosis of the situation, the time of detection and diagnosis of the situation, the behavior of the controlled technological parameter, the workload, the functional state of the operator. The results obtained can be used to develop strategies for the joint activity of heterogeneous agricultural robots, controlled using intuitive human-machine interfaces.
1. Andreev V.P., Pletenev P.F. Metod informacionnogo vzaimodejstvija dlja sistem raspredeljonnogo upravlenija v robotah s modul'noj arhitekturoj. Trudy SPIIRAN. 2018;2(57):134–160. DOI: 10.15622/sp.57.6. (In Russ)
2. Ryumin D., Kagirov I., Axyonov A., Pavlyuk N., Saveliev A., Kipyatkova I., Zelezny M., Mporas I., Karpov A. A Multimodal User Interface for an Assistive Robotic Shopping Cart. Electronics. 2020;9(12):2093. DOI: 10.3390/electronics9122093.
3. Tikanmäki A., Bedrník T., Raveendran R., Röning J. The remote operation and environment reconstruction of outdoor mobile robots using virtual reality. 2017 IEEE International Conference on Mechatronics and Automation. 2017;1526–1531. DOI: 10.1109/ICMA.2017.8016043.
4. Tikanmaki A., Roning J. Development of Mörri, a high performance and modular outdoor robot. 2009 IEEE International Conference on Robotics and Automation. IEEE, 2009;1441–1446. DOI: 10.1109/ROBOT.2009.5152437.
5. Iqbal J., Xu R., Halloran H., Li C. Development of a Multi-Purpose Autonomous Differential Drive Mobile Robot for Plant Phenotyping and Soil Sensing. Electronics. 2020;9(9):1550. DOI: 10.3390/electronics9091550.
6. Ju C., Son H.I. A distributed swarm control for an agricultural multiple unmanned aerial vehicle system. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering. 2019;233(10):1298-1308. DOI: 10.1177/0959651819828460.
7. Jiao R. et al. An Intuitional End-to-End Human-UAV Interaction System for Field Exploration. Frontiers in Neurorobotics. 2019;13:117. DOI: 10.3389/fnbot.2019.00117.
8. Galin R., Meshcheryakov R. Collaborative Robots: Development of Robotic Perception System, Safety Issues, and Integration of AI to Imitate Human Behavior. Proceedings of 15th International Conference on Electromechanics and Robotics" Zavalishin's Readings". Springer, Singapore, 2021;175-185. DOI: 10.1007/978-981-15-5580-0_14.
9. Astapova M.A., Aksamentov E.A. Ispol'zovanie spektral'nyh landshaftnyh indeksov dlja detektirovanija prepjatstvij v zadachah navigacii mobil'nyh robototehnicheskih platform na sel'skohozjajstvennyh territorijah. Izvestija Jugo-Zapadnogo gosudarstvennogo universiteta. 2021;25(1):66–81. DOI: 10.21869/2223-1560-2021-25-1-66-81. (In Russ)
10. Aksamentov E., Zakharov K., Tolopilo D., Usina E. Approach to Robotic Mobile Platform Path Planning Upon Analysis of Aerial Imaging Data. Proceedings of 15th International Conference on Electromechanics and Robotics “Zavalishin’s Readings”. – Springer, Singapore, 2021;93-102. DOI: 10.1007/978-981-15-5580-0_7.
11. Sauro J. Measuring Task Times without Users. 2011. Available at: http://www.measuringusability.com/predicted-times.php (accessed 2020-12-14).
12. Mayhew D.J. Keystroke level modeling as a cost justification tool. Cost-Justifying Usability. Morgan Kaufmann, 2005;465-XV. DOI: 10.1016/B978-012095811-5/50016-X.
13. Comber T., Maltby J. R. Investigating Layout Complexity. CADUI. 1996; 209–228.
14. Kurzanceva L.I. Razrabotka adaptivnogo cheloveko-mashinnogo interfejsa s ispol'zovaniem mnozhestva kriteriev ocenki ego kachestva. Upravljajushhie sistemy i mashiny. 2011;6:46-51. (In Russ)
15. Nielsen J. Heuristic evaluation. Usability inspection methods. John Wiley & Sons, Inc., 1994;25–62.
Keywords: agricultural robots, UAV, human-machine interface, quality assessment criteria, group interaction of robots, spot farming
For citation: Vatamaniuk I.V., Saveliev A.I., Güzey H., Jokisch O., Motienko A.I. Criteria for assessing quality of human-machine interface of a heterogeneous group of agricultural robots. Modeling, Optimization and Information Technology. 2021;9(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1052 DOI: 10.26102/2310-6018/2021.34.3.027 (In Russ).
Received 16.09.2021
Revised 28.09.2021
Accepted 29.09.2021
Published 30.09.2021