Формула для расчета теоретической вольтамперной характеристики 3D канала обессоливания ЭДА
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Formula for calculating the theoretical current-voltage characteristic of the 3D desalination channel EDA

idKovalenko A.V., Gudza I.V.,  idChubyr N.O., idUrtenov K.M., Khromykh A.A. 

UDC 519.87+004.421
DOI: 10.26102/2310-6018/2021.35.4.026

  • Abstract
  • List of references
  • About authors

The current-voltage characteristic is one of the most significant characteristics of salt ion transport in membrane systems. To date, there are only experimental studies of current-voltage characteristics that show complex, unsteady, unstable behavior. This is one of the reasons why there are no studies of theoretical current-voltage characteristics, another reason is mathematical and computational difficulties. In this article is derived using the Gauss-Ostrogradskii law and analyzes the formula for calculating the theoretical current-voltage characteristic for a three-dimensional desalination channel of an electrodialysis apparatus in a potentiodynamic mode. It’s shown that this formula is stable with respect to rounding errors in spatial variables, while maintaining the complex non-stationary behavior of the current-voltage characteristic over time. To apply the formulas, it is necessary to calculate the local current density using a mathematical model of the transport of binary salt ions in a three-dimensional desalination channel of an electrodialysis apparatus (EDA), taking into account electroconvection. The main regularities of changes in the current-voltage characteristic are established. It is shown that it qualitatively coincides with the experimental current-voltage characteristic. A small quantitative difference can be explained by the fact that the mathematical model does not take into account the dissociation/recombination reaction of water, gravitational convection and other transport mechanisms and requires separate further studies.

1. Budnikov E. Y. Analysis of fluctuation phenomena in the field of extreme currents in an electromembrane system. Dissertation for the degree of Candidate of Physical and Mathematical Sciences. Moscow. 2000;115. (In Russ.)

2. Budnikov E. Yu., Kukoev I. Yu., Maksimychev A.V., Miroshnikova I. N., Timashev S. F., Gulyaev A.M.. Wavelet and Fourier analysis of electrical fluctuations in polyconducting and electrochemical systems. Izmeritel'naya Tekhnika = Measuring Equipment. 1999;11:40–44. (In Russ.)

3. Mani A., Bazant M.Z. Deionization shocks in microstructures. Physical Review E. 2011;84:061504. Available at: https://www.researchgate.net/publication/221804743_Deionization_shocks_in_microstructures. DOI:10.1103/PhysRevE.84.061504. (accessed 22.11.2021).

4. Landau L.D., Lifshits E.M. Electrodynamics of continuous media. M.: Science; 1982:621. (In Russ.)

5. Urtenov K.M., Kovalenko A.V., Chubyr N.O., Khromykh A.A. Boundary value problem for current density in the space charge region. Ekologicheskiy vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva = Ecological Bulletin of the Scientific Centers of the Black Sea Economic Cooperation. 2010;7(1):70–73. Available at: https://elibrary.ru/item.asp?id=14435210. (accessed 22.11.2021). (In Russ.)

6. Simons R. Nature, Land. 1979;280:41.

7. Nikonenko V., Kovalenko, A., Urtenov, M., Pismenskaya, N., Han, J., Sistat, P., Pourcelly, G. Desalination at overlimiting currents: State-of-the-art and perspectives. Desalination. 2014;342:85–106. Available at: https://www.researchgate.net/publication/261563484_Desalination_at_overlimiting_currents_State-of-the-art_and_perspectives. DOI:10.1016/j.desal.2014.01.008. (accessed 22.11.2021).

8. Rubinstein I., Zaltzman B. Equilibrium electro-osmotic instability in concentration polarization at a perfectly charge-selective interface. Physical Review Fluids. 2017;2(9). Available at: https://www.researchgate.net/publication/320070217_Equilibrium_electro-osmotic_instability_in_concentration_polarization_at_a_perfectly_charge-selective_interface. DOI: 10.1103/PhysRevFluids.2.093702. (accessed 22.11.2021).

9. Urtenov M.K., Chubyr N.O., Gudza V.A. Reasons for the formation and properties of soliton-like charge waves in membrane systems when using overlimiting current modes. Membranes. 2020;10(8):189. Available at: https://www.researchgate.net/publication/343693372_Reasons_for_the_Formation_and_Properties_of_Soliton-Like_Charge_Waves_in_Membrane_Systems_When_Using_Overlimiting_Current_Modes. DOI:10.3390/membranes10080189. (accessed 22.11.2021).

10. Greben V.P., Pivovarov, N.Y., Kovarskii, N.Y., Nefedova, G.V. Influence of ion-exchange resin nature on physic-chemical properties of bipolar membranes. Sov. J. Phys. Chem. 1978;52:2641–2645. Available at: https://www.researchgate.net/publication/284830531_Influence_of_ion-exchange_resin_nature_on_physic-chemical_properties_of_bipolar_membranes. (accessed 22.11.2021).

11. Rubinstein I., Zaltzman B. Electro-osmotic slip and electroconvective instability. J. Fluid Mech. 2007;579:173–226. Available at: https://www.researchgate.net/publication/231948195_Electro-osmotic_slip_and_electroconvective_instability. DOI:10.1017/S0022112007004880. (accessed 22.11.2021).

12. Uzdenova A.M., Kovalenko A.V., Urtenov M.K., Nikonenko V.V Effect of electroconvection during pulsed electric field electrodialysis. Numerical experiments. Electrochemistry Communications. 2015;51:1–5. Available at: https://www.researchgate.net/publication/272395440_Effect_of_electroconvection_during_pulsed_electric_field_electrodialysis_Numerical_experiments. DOI:10.1016/j.elecom.2014.11.021. (accessed 22.11.2021).

13. Urtenov M.A.Kh., Gudza V.A.,Chubyr N.O., Shkorkina I.V. Theoretical Analysis of the Stationary Transport of 1:1 Salt Ions in a Cross-Section of a Desalination Channel, Taking into Account the Non-Catalytic Dissociation/Recombination Reaction of Water Molecules / Membranes. 2020;10(11):342. Available at: https://www.researchgate.net/publication/346881766_Theoretical_Analysis_of_the_Stationary_Transport_of_11_Salt_Ions_in_a_Cross-Section_of_a_Desalination_Channel_Taking_into_Account_the_Non-Catalytic_DissociationRecombination_Reaction_of_Water_Molecule. DOI:10.3390/membranes10110342. (accessed 22.11.2021).

14. Nikonenko V.V., Mareev S.A., Pismenskaya N.D., Uzdenova A.M., Kovalenko A.V., Urtenov M.H., Purseli J. The effect of electroconvection and its use for the intensification of mass transfer in electrodialysis (Review). Elektrokhimiya = Electrochemistry. 2017;53(10):1266–1289. Available at: https://elibrary.ru/item.asp?id=30297556. DOI: 10.7868/S0424857017100061. (accessed 22.11.2021). (In Russ.)

15. Urtenov M.Kh., Kovalenko A.V., Sukhinov A.I., Chubyr N.O., Gudza V.A. Model and numerical experiment for calculating the theoretical current-voltage characteristic in electro-membrane systems. IOP Conference Series: Materials Science and Engineering. Collection of materials of the XV International Scientific - Technical Conference. Don State Technical University. 2019;012030. Available at: https://www.researchgate.net/publication/337743733_Model_and_numerical_experiment_for_calculating_the_theoretical_current-voltage_characteristic_in_electro-membrane_systems. DOI: 10.1088/1757-899X/680/1/012030. (accessed 22.11.2021).

16. Shkorkina I.V., Chubyr N.O., Gudza V.A., Urtenov M.A. Kh. Current-voltage characteristic of unsteady 1:1 salt ion transfer in the cross-section of the desalination channel. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2020;8(3). Available at: https://moit.vivt.ru/wp-content/uploads/2020/08/ShkorkinaSoavtors_3_20_1.pdf. DOI: 10.26102/2310-6018/2020.30.3.020. (accessed 22.11.2021). (In Russ.)

Kovalenko Anna Vladimirovna
Dr. Sci, associate professor

ORCID |

Kuban State University

Krasnodar, Russian Federation

Gudza Inna Vladimirovna

Kuban State University

Krasnodar, Russian Federation

Chubyr Natalia Olegovna
Cand.Sci. (Phys.–Math.), associate professor

ORCID |

Kuban State Technological University

Krasnodar, Russian Federation

Urtenov Khuseevich Makhamet
Dr. Sci. (Phys.–Math.), Professor

ORCID |

Kuban State University

Krasnodar, Russian Federation

Khromykh Anna Alekseyevna
Cand.Sci. (Phys.–Math.)

Krasnodar University of the Ministry of the Internal of Russia

Krasnodar, Russian Federation

Keywords: desalination, current-voltage curve, electrodialysis, nernst-Planck-Poisson and Navier-Stokes equations, gauss-Ostrogradskii law, numerical methods, membrane systems, ion exchange membrane, desalination channel

For citation: Kovalenko A.V., Gudza I.V., Chubyr N.O., Urtenov K.M., Khromykh A.A. Formula for calculating the theoretical current-voltage characteristic of the 3D desalination channel EDA. Modeling, Optimization and Information Technology. 2021;9(4). URL: https://moitvivt.ru/ru/journal/pdf?id=1089 DOI: 10.26102/2310-6018/2021.35.4.026 (In Russ).

565

Full text in PDF

Received 29.11.2021

Revised 19.12.2021

Accepted 29.12.2021

Published 31.12.2021