Адаптивное управление магнитотерапией с использованием биотехнических обратных связей по импедансу биологически активных точек в физиотерапии ишемических больных
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Adaptive control of magnetotherapy by means of biotechnical feedback on the impedance of biologically active points in physiotherapy of ischemic patients

Miroshnikov A.V.,  idPetrunina E.V., Pavlenko A.V.,  Protasova Z.O.,  Shekhine M.T.,  Shulga L.V. 

UDC 004.89
DOI: 10.26102/2310-6018/2022.36.1.023

  • Abstract
  • List of references
  • About authors

The article examines a biotechnical system of rehabilitation and treatment of ischemic patients. A generalized structural diagram of rehabilitation of patients with high ischemic risk by exposing them to magnetic fields with controlled biotropic parameters is presented. The scheme allows building a model of the living system functional state and implementing adaptive control of magnetotherapy through biotechnical feedback on surrogate markers. A biotechnical system of magnetotherapy for patients with coronary heart disease has been developed. Biotechnical feedback was introduced into the system, which enabled it to adapt the magnetotherapy program to the functional state of the patient and correct it during the therapeutic session. Adjusting the therapeutic magnetic field parameters made it possible to increase the therapeutic effect of the physiotherapeutic procedure, reduce the adaptation and negative reactions of the body to magnetotherapy, and plan magnetotherapy programs. To implement the feedback, which ensures the adaptation of the magnetic field biotropic parameters to the functional state of the patient, we used information about the impedance of biologically active points and ischemic risk classifiers, the descriptors of which were determined on the basis of this information. An algorithm for controlling the biotropic parameters of the magnetic field by means of the functional state multimodal classifiers of the patient and a fuzzy inference module, designed to correct the biotropic parameters of the magnetic field in the course of a magnetic therapy session, is given. In a clinical setting, it was shown that the application of adaptive magnetic therapy is an effective method of treating patients with angina pectoris II and III of functional classes (85% and 77%, respectively), which is 14% and 15% higher than the corresponding results in the control group.

1. Gostev S.S., Zhulev V.I. A method for determining the degree of patient's magnetic sensitivity. The Russian Federation; RU2289302C1 (Patent) 2006. (In Russ.)

2. Trifonov A.A., Petrunina E.V., Filist S.A., Kuzmin A.A., Zhilin V.V. Biotechnical system with virtual reality in rehabilitation complexes with artificial feedback. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta. Seriya: Upravleniye, vychislitel'naya tekhnika, informatika. Meditsinskoye priborostroyeniye = Proceedings of the Southwestern State University. Series: Management, computer technology, informatics. Medical instrumentation. 2019;9(4):46–66. (In Russ.)

3. Petrova T.V., Filist S.A., Degtyarev S.V., Kiselev A.V., Shatalova O.V. Synchronicity predictors of systemic rhythms of living systems for classifiers of their functional states. System analysis and control in biomedical systems. 2018;17(3):693–700. (In Russ.)

4. Trifonov A.A., Kuzmin A.A., Filist S. A. and Petrunina E.V. Neural network model in the exoscelete verticalization control system. Journal of Physics: Conference Series. 2020;1679(3). Available at: https://iopscience.iop.org/article/10.1088/1742-6596/1679/3/032036/pdf. DOI:10.1088/1742-6596/1679/3/032036 (accessed 08/15/2021).

5. Trifonov A.A., Petrunina E.V., Kuzmin A.A., Protasova Z.U., Lazurina L.P. Methods and means of providing rehabilitation procedures through a biotechnical system with biofeedback and a fuzzy control module. System analysis and control in biomedical systems. 2021;20(3):71–83. (In Russ.)

6. Filist S.A., Trifonov A.A., Kuzmin A.A., Petrunina E.V., Shekhine M.T. Adaptive biotechnical system with a robotic device for restoring the motor functions of the lower limbs of post-stroke patients. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2021;9(3):4–5. (In Russ.)

7. Shatalova O. V., Mednikov D. A., Protasova Z. U. Multi-agent intelligent system for predicting the risk of cardiovascular complications with synergistic channels. System analysis and control in biomedical systems. 2020;19(3):177–188. (In Russ.)

8. Filist S.A., Shatalova O.V., Efremov M.A. Hybrid neural network with macrolayers for medical applications. Neyrokomp'yutery. Razrabotka i primeneniye = Neurocomputers. Development and application. 2014;6:35–39. (In Russ.)

9. Efremov M.A., Shatalova O.V., Fedyanin V.V., Shutkin A.N. Hybrid multi-agent classifiers in biotechnical systems for diagnosing diseases and monitoring drug prescriptions. Neyrokomp'yutery: razrabotka, primeneniye = Neurocomputers: development, application. 2015;6:42–47. (In Russ.)

10. Surzhikova S.E., Filist S.A., Zhilin V.V., Kurochkin A.G. Using hybrid neural network models for multi-agent classification systems in a heterogeneous space of informative features. Prikaspiyskiy zhurnal: upravleniye i vysokiye tekhnologii = Caspian journal: management and high technologies. 2015;3:85–95. (In Russ.)

11. Filist S.A., Tomakova R.A., Yaa Z.D. Universal network models for biomedical data classification problems. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwestern State University. 2012; 4(43):44–50. (In Russ.)

12. Kiselev A.V., Petrova T.V., Degtyarev S.V., Rybochkin A.F., Filist S.A., Shatalova O.V., Mishustin V.N. Neural network modules with virtual flows for classifying and predicting the functional state of complex systems. Izvestiya Yugo-Zapadnogo gosudarstvennogo universiteta = Proceedings of the Southwestern State University. 2018;4(79):123–134. (In Russ.)

13. Emelyanov S. G., Rybochkin A. F., Filist S. A., Khaled A. R. Neural network decision module for the study of living systems. Izvestiya Kurskogo gosudarstvennogo tekhnicheskogo universiteta = News of the Kursk State Technical University. 2008;(2):77–82. (In Russ.)

14. Filist S.A., Aleksenko V.A., Kassim Kabus Hybrid information technologies for express diagnostics of infectious diseases based on multifrequency analysis of passive properties of biological tissues. Izvestiya YUFU. Tekhnicheskiye nauki. Tematicheskiy vypusk. «Meditsinskiye informatsionnyye sistemy» = Izvestiya SFedU. Technical science. Thematic issue. "Medical Information Systems". 2010;8(109):12–17. (In Russ.)

15. Kassim K.D.A., Klyuchikov I.A., Shatalova O.V., Yaa Z.D. Parametric models of bioimpedance for identification of the functional state of a living system. Biomeditsinskaya radioelektronika = Biomedical radioelectronics. 2012;4:50–56. (In Russ.)

16. Filist S.A., Shatalova O.V., Bogdanov A.S. Models of bioimpedance with a nonlinear current-voltage characteristic and reversible breakdown of the dielectric component of the biomaterial. Bulletin of Siberian medicine. 2014;13(4):129–135. (In Russ.)

17. Filist S.A., Kuzmin A.A., Kuzmina M.N. Biotechnical system for monitoring the impedance of biomaterials in in vivo experiments. Biomedical radioelectronics. 2014;9:38–42. (In Russ.)

18. Miroshnikov A. V., Stadnichenko N. S., Shatalova O. V., Filist S. A. Biomaterial impedance models for the formation of descriptors in intelligent systems for diagnosing infectious diseases. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2020;8(4):3–4. (In Russ.)

19. Shatalova O.V., Filist S.A., Korenevskiy N.A. et al. Application of fuzzy neural network model and current-voltage analysis of biologically active points for prediction of post-surgery risks. Computer Methods in Biomechanics and Biomedical Engineering. 2021;24(13):1504–1516. Available from: https://doi.org/10.1080/10255842.2021.1895128. DOI: 10.1080/1895128.

20. Filist S.A., Shatalova O.V., Protasova Z.U., Stadnichenko N.S. A method for classifying biological objects based on multidimensional bioimpedance analysis and a device for its implementation. The Russian Federation; RU2752594C1 (Patent) 2021. (In Russ.)

21. Filist S.A., Shatalova O.V., Efremov M.A. Hybrid neural network with macrolayers for medical applications. Neyrokomp'yutery. Razrabotka i primeneniye = Neurocomputers. Development and application. 2014;6:35–39. (In Russ.)

22. Zhilin V.V., Filist S.A., Rakhim K.A., Shatalova O.V. A method for creating fuzzy neural-network models using the MATLAB package for biomedical applications. Biomedical Engineering. 2008;42(2):64.

Miroshnikov Andrey Valerievich

Southwestern State University

Kursk, Russian Federation

Petrunina Elena Valer'evna
Candidate of Technical Sciences, Associate Professor

ORCID |

Moscow State University for the Humanities and Economics

Moscow, Russian Federation

Pavlenko Andrey Vitalievich

Southwestern State University

Kursk, Russian Federation

Protasova Zeynab Osama

Southwestern State University

Kursk, Russian Federation

Shekhine Mohamad Tufik
Candidate of Technical Sciences

Kursk State Medical University

Kursk, Russian Federation

Shulga Leonid Vasilievich
Doctor of Medical Sciences, Professor, Professor

Southwestern State University

Kursk, Russian Federation

Keywords: ischemic risk, adaptive magnetotherapy, biotechnical system, biologically active point, neural network, fuzzy control module, base of fuzzy decision rules, algorithm

For citation: Miroshnikov A.V., Petrunina E.V., Pavlenko A.V., Protasova Z.O., Shekhine M.T., Shulga L.V. Adaptive control of magnetotherapy by means of biotechnical feedback on the impedance of biologically active points in physiotherapy of ischemic patients. Modeling, Optimization and Information Technology. 2022;10(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1134 DOI: 10.26102/2310-6018/2022.36.1.023 (In Russ).

490

Full text in PDF

Received 06.02.2022

Revised 26.02.2022

Accepted 14.03.2022

Published 31.03.2022