Keywords: differential-difference system, spatial variable on a graph, optimization problem, initial-boundary value problem, network (directed graph)
Optimization of a discrete-time system for transferring a continuous medium over a network carrier
UDC 517.929.2
DOI: 10.26102/2310-6018/2022.37.2.029
The technologies for transferring continuous media (gas, oil, petroleum products, etc) use carriers (main pipelines) with a topological structure similar to that of a geometrical graph. A large volume of literature is devoted to the issues of mathematical modeling of transfer processes along such carriers as well as to the analysis of various kinds of optimization problems related to them, but the mathematical justification of the findings is not sufficient from the standpoint of the general mathematical theory of heat and mass transfer. The paper considers the problem of a differential-difference system optimization, which determines the discrete-time equivalent of a differential system for the transport equation on a graph (in applications, on a network). E. Rote's method is employed, which is based on semi-discretization with respect to the time variable of the initial-boundary value problem, which helps to establish not only the conditions for the solvability of the specified problem, but also to obtain an optimization problem for the differential-difference system. Moreover, the coercive property of the elliptic operator bilinear differential form and the continuity of the quadratic functional being minimized are necessary and sufficient conditions for the unique solvability of the optimization problem. The findings are applicable in modeling network-like processes of continuum transport by formalisms of differential-difference systems with a spatial variable fluctuating on a network-like multidimensional domain. The conditions that determine the solution of the optimization problem or the set of such solutions are presented. Concurrently, approaches to the analysis of the optimization problem for a system defined on a multidimensional network-like domain are outlined. The findings underlie the analysis of optimal control problems for differential systems with distributed parameters on a graph, which have interesting analogies with multiphase problems of multidimensional hydrodynamics.
1. Provotorov V.V. K voprosu postroeniya granichnykh upravlenii v zadache o gashenii kolebanii sistemy «machta-rastyazhkI». Sistemy upravleniya i informatsionnye tekhnologii. 2008;32(2.2):293–297. (In Russ.)
2. Podvalny S.L., Provotorov V.V., Podvalny E.S., The controllability of parabolic systems with delay and distributed parameters on the graph. Procedia Computer Sciense. 2017;103:324–330.
3. Provotoro V.V. Postroenie granichnyh upravlenij v zadache o gashenii kolebanij sistemy iz M strun. Vestnik Sankt-Peterburgskogo universiteta. Prikladnaja matematika. Informatika. Processy upravlenija. 2012;1:60–69. (In Russ.)
4. Volkova A.S., Mahinova O.A. Ustojchivost' raznostnoj shemy dlja jellipticheskogo uravnenija s raspredelennymi parametrami na grafe. Sistemy upravlenija i informacionnye tehnologii. 2014;1(55):19–22. (In Russ.)
5. Rothe E. Warmeleitungsgleichungen mit nichtconstanten koeffizienten. Thermal conductivity equations with non-constant coefficients. Math. Ann.1931;104:340–362. (In German) (accessed 10/2/2022).
6. Provotorov V.V., Sergeev S.M., Hoang V.N. Countable stability of a weak solution of a parabolic differential-difference system with distributed parameters on the graph. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2020;16(4):402–414. Available at: https://doi.org/10.21638/11701/spbu10.2020.405 (accessed 10/2/2022).
7. Volkova A.S., Provotorov V.V. Obobshhennye reshenija i obobshhennye sobstvennye funkcii kraevyh zadach na geometricheskom grafe. Izvestija vuzov. Matematika. 2014;3:3–18. (In Russ.)
8. Lions Zh.-L. Nekotorye metody reshenija nelinejnyh kraevyh zadach. Moskva, Mir; 1972. 414 p. (In Russ.)
9. Provotorov V.V., Provotorova E.N. Optimal control of the linearized Navier-Stokes system in a netlike domain. Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes. 2017;13(4):431–443. Available at: https://doi.org/10.21638/11702/spbu10.2017.409 (accessed 10/02/2022).
10. Artemov M.A., Baranovskii E.S., Zhabko A.P., Provotorov V.V. On a 3D model of nonisothermal flows in a pipeline network. Journal of Physics. Conference Series. 2019;1203:012094. Available at: https://doi.org/10.1088/1742-6596/1203/1/012094 (accessed 10/02/2022).
11. Volkova A.S. Approksimacija kraevoj zadachi dlja jellipticheskogo uravnenija s raspredelennymi parametr ami na grafe. Sistemy upravlenija i informacionnye tehnologii. 2014;1.1(55):117–121. (In Russ.)
12. Tran D., Part A.A. Parametric optimization of the continuous medium transferring process over a network carrier. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, Optimization and Information Technology. 2021;9(4). Available from: https://moitvivt.ru/ru/journal/pdf?id=1090. DOI: 10.26102/2310-6018/2021.35.4.037 (In Russ.)
13. Tran D., Provotorov V.V. Finite difference method for transfer equation with distributed parameters on the network. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, Optimization and Information Technology. 2021;9(3). Available from: 1019 https://moitvivt.ru/ru/journal/pdf?id=1019. DOI: 10.26102/2310-6018/2021.34.3.012 (In Russ.)
14. Sergeev S.M. Cross-system way of looking to business with limited resources // In the collection: Selected Papers of the International Scientific School "Paradigma" Winter-2016 (Varna, Bulgaria) Compiling Editor Dr.Sc., Prof. O.Ja. Kravets. Yelm, WA, USA. 2016:95–102 (accessed 10/2/2022).
15. Krasnov S., Sergeev S., Titov A., Zotova Y. Modelling of digital communication surfaces for products and services promotion. IOP Conference Series: Materials Science and Engineering. 2019;012032 (accessed 10/2/2022).
16. Krasnov S., Sergeev S., Zotova E., Grashchenko N. Algorithm of optimal management for the efficient use of energy resources. E3S Web of Conferences. 2018 International Science Conference on Business Technologies for Sustainable Urban Development, SPbWOSCE 2018. 2019;02052 (accessed 10/2/2022).
17. Borisoglebskaya L.N., Provotorov V.V., Sergeev S.M., Kosinov E.S. Mathematical aspects of optimal control of transference processes in spatial networks. IOP Conference Series: Materials Science and Engineering. International Workshop «Advanced Technologies in Material Science, Mechanical and Automation Engineering – MIP: Engineering – 2019». 2019;42025 (accessed 10/2/2022).
Keywords: differential-difference system, spatial variable on a graph, optimization problem, initial-boundary value problem, network (directed graph)
For citation: Tran D., Gunkina A.S. Optimization of a discrete-time system for transferring a continuous medium over a network carrier. Modeling, Optimization and Information Technology. 2022;10(2). URL: https://moitvivt.ru/ru/journal/pdf?id=1190 DOI: 10.26102/2310-6018/2022.37.2.029 (In Russ).
Received 27.05.2022
Revised 20.06.2022
Accepted 30.06.2022
Published 30.06.2022