Keywords: fractal, calculus, associative-verbal experiment, artificial intelligence, big data, language consciousness, information search
Fractal calculus application for analysis of the results of an associative-verbal experiment
UDC 004.043
DOI: 10.26102/2310-6018/2022.38.3.018
The paper supports the hypothesis on the use of fractal calculus to process the results of an associative-verbal experiment. The results of associative-verbal experiments are unstructured data with a large volume. The relevance of the study is due to the fact that the existing methods of processing the results of associative-verbal experiments cannot be unified because the data obtained have significant differences in formats. In turn, this limits the possibilities of creating and applying typical data processing algorithms for various associative-verbal experiments. One of the main problems of computational linguistics is the heterogeneity of hierarchical structures describing human consciousness and speech, as well as their constant modification. One of the possible solutions to this problem is to employ the method of fractal calculus that can help develop a model of linguistic consciousness having not only a complex structure of its own but is in constant interaction with other structures of the real world. Leading Russian scientists have substantiated means for addressing similar issues with unstructured data in other academic fields, which is analyzed in this article. Based on the presented research of scientists, a comparative analysis of existing fractal models for solving problems in various fields of activity is given, and a hypothesis about the possibility of using this method to model linguistic consciousness is suggested.
1. Semenec O.P. Tekstoporozhdayushij potencial precedentnyh fenomenov v yazykovom soznanii govoryashih (na materiale associativnogo eksperimenta). Socio- i psiholingvisticheskie issledovaniya. 2016;(4):88–91. (In Russ.).
2. Karaulov Yu.N. Russkij yazyk i yazykovaya lichnost. M.: Pedagogika-press; 1987. (In Russ.).
3. Potapov A.A. Fraktaly, skejling i drobnye operatory v radiotehnike i elektronike: sovremennoe sostoyanie i razvitie. Zhurnal radioelektroniki. 2010;1. (In Russ.).
4. Potapov A.A. Fraktaly i haos kak osnova novyh proryvnyh tehnologij v sovremennyh radiosistemah. Dopolnenie k knige: Kronover R. «Fraktaly i haos v dinamicheskih sistemah»: Per. s angl. M.: Tehnosfera; 2006. P. 374–479. (In Russ.).
5. Potapov A.A., Chernyh V.A. Drobnoe ischislenie A.V. Letnikova, teoriya fraktalov i skejling. Pod red. A.A. Potapova. M.: Fizmatlit; 2009. (In Russ.).
6. Barinov V.R., Barinova N.V. Issledovanie fenomena sozdaniya interlingvy samim servisom «Google Translate». Nauka, tehnika i obrazovanie. 2017;3(33):47–49. (In Russ.).
7. Polikarpov V.S., Polikarpova E.V., Polikarpova V.A. Fraktalnyj podhod kak metodologicheskoe osnovanie vzaimosvyazi estestvoznaniya i mediciny. Mezhdunarodnyj zhurnal prikladnyh i fundamentalnyh issledovanij. 2014;11-3:493–496. (In Russ.).
8. Zelenyj L.M., Milovanov A.V. Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyacii k problemam kineticheskoj elektrodinamiki. Uspehi fizicheskih nauk. 2004;174(8):809–852. (In Russ.).
9. Sokolova N.V. Prirodnye fraktalnye struktury upravleniya gidro- i litodinamicheskimi potokami. Mezhdunarodnyj zhurnal gumanitarnyh i estestvennyh nauk. 2019;9-2:25–30. (In Russ.).
10. Mandelbrot B. Fraktalnaya geometriya prirody. M.: «Institut kompyuternyh issledovanij»; 2002. (In Russ.).
11. Selyutin V.D., Yushin V.N. Stohastichnost kak vnutrenne svojstvo dinamicheskih sistem. Uchenye zapiski Orlovskogo gosudarstvennogo universiteta. Seriya: Estestvennye, tehnicheskie i medicinskie nauki. 2011;5:169–172. (In Russ.).
12. Samchenko A.G. Fraktaly i fraktalnye struktury v obemno-prostranstvennom reshenii obektov arhitektury. Vestnik Donbasskoj nacionalnoj akademii stroitelstva i arhitektury. 2015;3(113):58–61. (In Russ.).
13. Kabaldin Yu.G., Laptev I.L., Shatagin D.A., Zotov V.O., Seryj S.V. Intellektualnye sistemy diagnostiki sostoyaniya oborudovaniya i iznosa instrumenta. Mashinostroenie: setevoj elektronnyj nauchnyj zhurnal. 2014;2(2):47–50. (In Russ.).
14. Kabaldin Yu.G., Bilenko S.V., Seryj S.V. Upravlenie dinamicheskimi processami v tehnologicheskih sistemah mehanoobrabotki na osnove iskusstvennogo intellekta. Komsomolsk-na-Amure: GOU VPO «Komsomolskij-na-Amure gos. tehn. un-t»; 2003. (In Russ.).
15. Ivanov V.V., Talanov V.M. Principy modulyarnogo stroeniya regulyarnyh fraktalnyh struktur. Uspehi sovremennogo estestvoznaniya. 2012;3:56–57. (In Russ.).
16. Birkgof G., Barti T. Sovremennaya prikladnaya algebra. M.: Mir; 1976. (In Russ.).
17. Ivanov V.V. Prostye i gibridnye deterministicheskie monomodulyarnye fraktalnye struktury. Mezhdunarodnyj zhurnal prikladnyh i fundamentalnyh issledovanij. 2016;11-6:1124–1128. (In Russ.).
18. Shreder M. Fraktaly, haos, stepennye zakony: miniatyury iz beskonechnogo raya. Per. s angl. Yu.A. Danilova, A.R. Logunova; pod red. A.V. Borisova. M.; Izhevsk: Regulyar. i haot. dinamika; 2005. 527 p. (In Russ.).
Keywords: fractal, calculus, associative-verbal experiment, artificial intelligence, big data, language consciousness, information search
For citation: Barinov V.R., Philippovich Y.N. Fractal calculus application for analysis of the results of an associative-verbal experiment. Modeling, Optimization and Information Technology. 2022;10(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1206 DOI: 10.26102/2310-6018/2022.38.3.018 (In Russ).
Received 14.06.2022
Revised 25.07.2022
Accepted 23.09.2022
Published 30.09.2022