Алгоритмы и программные средства человеко-машинной обработки цифровых водяных знаков в видеопоследовательности
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Algorithms and software tools for human-machine processing of digital watermarks in video sequences

idMorkovin S.V.

UDC 004.75
DOI: 10.26102/2310-6018/2022.38.3.024

  • Abstract
  • List of references
  • About authors

The global informatization of modern society and continuous scientific and technological progress contribute to a rapid increase in the volume of video content in the global computer network. In some cases, the tasks of unambiguous identification of the source and content authentication arise when distributing unique author's multimedia information. One of the main approaches to solving this problem is to mark a digital graphic image with a digital watermark. In order to minimize the distortion of the original graphic data as well as to hide the presence of any protection of multimedia information, an invisible digital watermark is used. Digital steganography is one of the solutions that provide the means for embedding invisible robust graphic labels in digital images. In this context of application, the purpose of steganography changes – the hidden information becomes a "watermark" whereby it is possible to identify the author or owner of the labeled content. A widespread method of introducing a digital watermark is the procedure of successive transformations in the spectral region of the image followed by the introduction of a digital watermark to the Fourier spectrum. At the same time, it is obvious that any modifications of the data in the frequency spectrum lead to the distortion of the original image and the appearance of unmasking features in the form of artifacts. The article discusses algorithms and software tools for human-machine processing of digital watermarks in a video sequence, which is characterized by continuous change in the coordinates and rotation angle of the digital watermark being implemented.

1. Moosazadeh M., Ekbatanifard G. A New DCT-Based Robust Image Watermarking Method Using Teaching-Learning-Based Optimization. Journal of Information Security and Applications. 2019;47:28–38.

2. Shumskaya O.O., Zelezny M. K. Adaptive algorithm of replacement-based embedding of data into compressed JPEG images. Informatsionno-upravlyayushchie sistemy = Information and Control Systems. 2018;5:44–56. DOI: 0.31799/1684-8853-2018-5-44-56. (In Russ.).

3. Xiang L., Wang X., Yang C., Liu P. A novel linguistic steganography based on synonym run-length encoding. IEICE transactions on Information and Systems. 2017;100(2):313–322.

4. Evsyutin O.O., Kokurina A.S., Meshcheryakov R.V. Steganographic embedding of additional data into the images of earth remote sensing by QIM method with a variable quantization step in the frequency domain. Izvestiya Tomskogo politekhnicheskogo universiteta = Bulletin of the Tomsk Polytechnic University. 2019;330(8):155–162. DOI: 10.18799/24131830/2019/8/2221. (In Russ.).

5. Ma H., Jia C., Li S., Zheng W., Wu D. Xmark: Dynamic Software Watermarking using Collatz Conjecture. IEEE Transactions on Information Forensics and Security. 2019;14(11):2859–2874.

6. Shumskaya O.O., Budkov V.Yu. Comparative study of classification methods in the stegoanalysis of digital images. Nauchnyy vestnik NGTU = Science Bulletin of the Novosibirsk State Technical University. 2018;3(72):121–134. DOI: 10.17212/1814-1196-2018-3-121-134. (In Russ.).

7. Hai N.M., Ogawa M., Tho Q.T. Packer identification based on metadata signature. In: Proceedings of the 7-th Software Security, Protection, and Reverse Engineering. Software Security and Protection Workshop. 2017;4:1–11. DOI: 10.1145/3151137.3160687.

8. Wang Y., Gong D., Lu B., Xiang F., Liu F. Exception handling-based dynamic software watermarking. IEEE Access. 2018;6:8882–8889.

9. Kozachok A.V., Kopylov S.A., Meshcheryakov R.V., Evsutin O.O., Tuan L.M. An approach to a robust watermark extraction from images containing text. Trudy SPIIRAN = SPIIRAS Proceedings. 2018;5(60):128–155. DOI: 10.15622/sp.60.5. (In Russ.).

10. Zhong X., Huang P.C., Mastorakis S., Shih F.Y. An Automated and Robust Image Watermarking Scheme Based on Deep Neural Networks. IEEE Access. 2021;23:1951–1961.

Morkovin Sergey Vladimirovich

ORCID | eLibrary |

The Federal Guard Service Academy

Orel, Russia

Keywords: digital watermark, video data, robustness, video stream, multimedia container, digital graphic image

For citation: Morkovin S.V. Algorithms and software tools for human-machine processing of digital watermarks in video sequences. Modeling, Optimization and Information Technology. 2022;10(3). URL: https://moitvivt.ru/ru/journal/pdf?id=1243 DOI: 10.26102/2310-6018/2022.38.3.024 (In Russ).

327

Full text in PDF

Received 20.09.2022

Revised 25.09.2022

Accepted 29.09.2022

Published 30.09.2022