Реализация алгоритма адаптивного диаграммообразования на ПЛИС
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Implementation of the adaptive beamforming algorithm on FPGA

idBoyko I.A., Kazmin O.Y.,  idGlushankov E.I., idKirik D.I., idKorovin K.O., Tsarik I.V. 

UDC 621.396.67.012.12
DOI: 10.26102/2310-6018/2023.40.1.025

  • Abstract
  • List of references
  • About authors

The paper regards the field-programmable gate array (FPGA) implementation of a beamforming algorithm in adaptive antenna arrays. The relevance of the research is due to the need to improve the noise robustness of signal reception in radio engineering systems. The gradient algorithm was chosen as a beamforming algorithm by the criterion of the normalized least mean square error criterion (NLMS), which has the lowest computational complexity, and its use of a variable adaptation step helps to ensure the convergence of the algorithm in terms of a priori unknown power of the input signal. This paper gives a mathematical description of the adaptive signal processing procedures and formulas for calculating the optimal weight vector that provide the best approximation of the input signal to the reference signal. Approximate methods that provide a practical realization of the optimal signal processing based on iterative algorithms in the form of the normalized minimum mean square error algorithm are considered. Examples of the antenna array directional diagram synthesis facilitating adaptive signal processing, implemented on FPGA, under different signal-interference conditions are presented. An acceptable agreement between theoretical and experimental data was obtained for all implementation cases.

1. Clarkson P.M. Optimal and adaptive signal processing. Routledge; 2017.

2. Jenkins W.K., Hull A.W., Strait J.C., Schnaufer B.A., Li X. Advanced concepts in adaptive signal processing. Springer Science & Business Media. 2012; 365 p.

3. Zhuravlev A.K. et al. Adaptive Radio Engineering Systems with Antenna Arrays. Leningrad: Leningrad State University Press; 1991. 544 p. (In Russ.).

4. Grigoriev V.A., Schesnyak S.S., Golushin V.L., Raspaev Yu.A., Lagutenko O.I., Schesnyak A.S. Adaptive antenna arrays. Textbook. St. Petersburg; 2018. 118 p. (In Russ.).

5. Glushankov E.I., Kolesnikov A.N. Estimation of potential efficiency of spatial and temporal signal processing in mobile radio lines with frequency hopping. Izv. vuzov. Radioelectronics. 1990;33(12):66–70. (In Russ.).

6. Glushankov E.I., Kolesnikov A.N., Ushakov V.V. Spatio-temporal signal processing with frequency hopping in satellite communication lines with moving objects. Prostranstvenno-vremennaya obrabotka signalov v sistemakh radiosvyazi, Prilozheniye k zhurnalu «Radiotekhnika» = Spatio-temporal signal processing in radiocommunication systems, supplement to the journal "Radiotekhnika".1992, 59–65. (In Russ.).

7. Widrow B., Stearns S. Adaptive Signal Processing. Translated from English. Moscow. Radio and Communications; 1989, 440 p. (In Russ.).

8. Widrow B., Mantey P.E., Griffitls L.D. Adaptive antenna systems. Trudy Instituta inzhenerov po elektronike i radiotekhnike = Proceedings of the Institute of Electronics and Radio Engineers. 1967;55(12):78–95. (In Russ.).

9. Boyko I.A., Glushankov E.I., Rylov E.A. Modeling the gradient algorithm of antenna array adaptation in MATLAB environment. Radiotekhnicheskiye i telekommunikatsionnyye sistemy = Radiotechnical and Telecommunication Systems. 2022;1:55–61. (In Russ.).

10. Boyko I.A. et al. Algorithms for Multiple Signals Adaptive Processing in Radio Engineering Systems Antenna Arrays. Systems of Signal Synchronization, Generating and Processing in Telecommunications, (SYNCHROINFO). 2021:1–6.

11. Xilinx, “HTG-ZRF8 User Manual”, DS926 datasheet. Aug. 2018. Available from: https://www.rfsoc-pynq.io/pdf/HTG-ZRF8_UG.pdf

12. Xilinx, “Zync UltraSale + RFSoC Data Sheet: DC and AC Switching Characteristics,” DS926 datasheet. Apr. 2021. Available from: https://docs.xilinx.com/r/en-US/ds926-zynq-ultrascale-plus-rfsoc.

Boyko Igor Andreevich

ORCID |

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Saint Petersburg, Russian Federation

Kazmin Oleg Yurievich

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Saint Petersburg, Russian Federation

Glushankov Evgeny Ivanovich
Doctor of Technical Sciences, Professor
Email: glushankov57@gmail.com

Scopus | ORCID | eLibrary |

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Saint Petersburg, Russian Federation

Kirik Dmitriy Igorevich
Candidate of Technical Sciences, Associate Professor
Email: d_i_kirik@mail.ru

WoS | Scopus | ORCID |

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Saint Petersburg, Russian Federation

Korovin Konstantin Olegovich
Candidate of Physical and Mathematical Sciences, Associate Professor
Email: konstkor@mail.ru

ORCID |

The Bonch-Bruevich Saint Petersburg State University of Telecommunications

Saint Petersburg, Russian Federation

Tsarik Igor Vladimirovich

Email: itsar@amungo-navigation.com

Eirtego Ltd

Saint Petersburg, Russian Federation

Keywords: adaptive antenna array, radiation pattern, MSE adaptive algorithm, FPGA

For citation: Boyko I.A., Kazmin O.Y., Glushankov E.I., Kirik D.I., Korovin K.O., Tsarik I.V. Implementation of the adaptive beamforming algorithm on FPGA. Modeling, Optimization and Information Technology. 2023;11(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1253 DOI: 10.26102/2310-6018/2023.40.1.025 (In Russ).

444

Full text in PDF

Received 23.10.2022

Revised 16.02.2023

Accepted 16.03.2023

Published 31.03.2023