Безиндикаторный информационно-измерительный метод определения параметров структуры потоков в тепло- и массообменных аппаратах
Работая с нашим сайтом, вы даете свое согласие на использование файлов cookie. Это необходимо для нормального функционирования сайта, показа целевой рекламы и анализа трафика. Статистика использования сайта отправляется в «Яндекс» и «Google»
Научный журнал Моделирование, оптимизация и информационные технологииThe scientific journal Modeling, Optimization and Information Technology
Online media
issn 2310-6018

Indicator-free information and measurement method for determining flow structure parameters in heat and mass exchangers

idPersidskiy A.V., idTopilin M.V., idMerentsov N.A., idGolovanchikov A.B.

UDC 66.021
DOI: 10.26102/2310-6018/2023.40.1.014

  • Abstract
  • List of references
  • About authors

The article proposes a method for determining differential and integral response curves and their dispersion ‒ the central moment of the second order according to the velocity profile, as well as the dependence of the velocity head or the height of the manometric liquid column in the Pitot-Prandtl tube on the radius of the apparatus. Calculated dependencies for determination of flow structure parameters are given on the basis of experimental data for distillation column by vapor phase and boiling solution, as well as equations of their conversion into C- and F- response curves, dispersions. Indicator methods for determining flow structure parameters are considered drawing on pulsed or stepped input of indicators into the flow with subsequent recording of changes in the concentration of "labeled" particles, molecules and ions over time. The indicator method of measuring parameters of the flow structure of liquid-phase mass exchange products is regarded using the input of a tracer, the electrical conductivity of which differs from the electrical conductivity of the carrier stream with subsequent registration of the signal at the output by a conductometric cell. Indicator methods for determining parameters of gas-phase carrier flows structure based on input of smoke particles, radioactive isotopes, as well as ionization of gas flow at the inlet to the engine displacement of the apparatus with subsequent recording of signals and recognition of model parameters are presented for comparison. The advantages of the proposed (information and measured) method of calculating the parameters mentioned above compared to the indicator method are shown related to the choice of the indicator, its accurate supply in the form of a pulse or step signal at the inlet of the object and registration at the outlet, as well as data on the densities of the liquid, gas or vapor phase in the object and the density of the manometric liquid in the Pitot-Prandtl tube.

1. Kagan A.M. et al. Contact nozzles for industrial heat and mass transfer devices. Ed. Laptev A.G. Kazan, Otechestvo. 2013; 454 p. (In Russ.)..

2. Timonin A.S., Bozhko G.V., Borshchev V.Ya., Gusev Yu.I. Equipment for oil and gas processing, chemical and petrochemical industries. Book 2. Under the general editor A.S. Timonin. M., Infra-Engineering; 2019. (In Russ.).

3. Golovanchikov A.B., Cherikova K.V., Prokhorenko N.A. Mathematical modeling of the cap plate in rectification processes. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2021;9(1). Available from: https://moitvivt.ru/ru/journal/pdf?id=924. DOI: 10.26102/2310-6018/2021.32.1.022. (In Russ.).

4. Dmitriev A.V., Madyshev I.N., Dmitrieva O.S., Nikolaev A.N. Studies of liquid and gas dispersion in contact devices with an increased range of stable operation. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2017;21(3):12–15. (In Russ.).

5. Madyshev I.N., Dmitrieva O.S., Dmitriev A.V. Prospects for the use of jet-bubbling contact devices to improve the energy efficiency of mass exchangers. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2015;19(7):36–39. (In Russ.).

6. Merentsov N.A., Persidskiy A.V., Golovanchikov A.B. Identification of a mathematical model for controlling absorption devices for selective purification of gas emissions. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2022;10(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1178. DOI: 10.26102/2310-6018/2022.37.2.024. (In Russ.).

7. Golovanchikov A.B., Prokhorenko N.A., Fomenkov S.A. Development and numerical modeling of the column design for gas-liquid contact. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2020; 8(4):31. Available from: https://moitvivt.ru/ru/journal/pdf?id=868. DOI: 10.26102/2310-6018/2020.31.4.022. (In Russ.).

8. Golovanchikov A.B., Merentsov N.A., Kachanov A.V.. Modeling the absorption process in a packed column operating in the emulsification mode. Ekologiya i promyshlennost' Rossii = Ecology and industry of Russia. 2021;25(3):24-29. (In Russ.).

9. MerentsovN.A., PersidskiyA.V., GolovanchikovA.B.Control of Mass Exchange Processes during Sorption Treatment of Gas Emissions. Modelirovaniye, optimizatsiya i informatsionnyye tekhnologii = Modeling, optimization and information technology. 2022;10(2). Available from: https://moitvivt.ru/ru/journal/pdf?id=1179. DOI: 10.26102/2310-6018/2022.37.2.023. (In Russ.).

10. Merentsov N.A., Golovanchikov A.B., Persidskiy A.V., Lebedev V.N. Modeling of management processes in environmental mass exchange equipment: monograph. VolgaGTU. Volgograd; 2020. 188 p. (In Russ.).

11. Golovanchikov A.B., Prokhorenko N.A., Merentsov N.A. Modeling of the flow structure in packed and poppet rectification columns: monograph. VolgaGTU. Volgograd; 2020. 168 p. (In Russ.).

12. Merentsov N.A., Golovanchikov A.B., Persidskiy A.V., Topilin M.V. Modeling of control processes in oil and gas processing mass exchange equipment: monograph. VolgaGTU. Volgograd; 2021. 212 p. (In Russ.).

13. Golovanchikov A.B., Zalipaeva O.A., Merentsov N.A. Modeling of sorption processes taking into account the flow structure: monograph. VolgaGTU. Volgograd; 2018. 128 p. (In Russ.).

14. Levenspil O. Engineering design of chemical processes. Moscow: Chemistry; 1969. 621 p. (In Russ.).

15. Kafarov V.V. Methods of cybernetics in chemistry and chemical technology. Moscow: Chemistry; 1976. 464 p. (In Russ.).

16. Zakheim A.Yu. Introduction to modeling of chemical processes. Moscow: Chemistry; 1982. 288 p. (In Russ.).

17. Tyabin N.V., Golovanchikov A.B. Methods of cybernetics in rheology and chemical technology. Volgograd: VPI; 1983. 104 p. (In Russ.).

18. Golovanchikov A.B., Dulkina N.A. Modeling of flow structure in chemical reactors. Volgograd: VolgaGTU; 2009. 240 p. (In Russ.).

19. Golovanchikov A.B., Vorotneva S.B. Simulation of hydrodynamic and thermal processes in a double-tube heat exchanger. Volgograd: VolgaGTU; 2015. 160 p. (In Russ.).

20. Golovanchikov A.B., Tyabin N.V., Briff E.A. Pat. RF 1813214 Method for Determining Gas Flow Structure in an Apparatus (1993) (In Russ.).

21. Merentsov N.A., Golovanchikov A.B., Topilin M.V., Persidskiy A.V. Experimental Determination Of Parameters Of Flow Structure Of Filtration Currents Through Layers Of Adsorbent Granules In Ecological Mass Exchange Equipment. Ekologiya i promyshlennost' Rossii = Ecology and Industry of Russia. 2022; 26(11):42–47. DOI: 10.18412/1816-0395-2022-11-42-47. (In Russ.).

Persidskiy Aleksandr Vladimirovich

ORCID |

Federal Scientific and Production Center “Titan – Barricady”

Volgograd, Russian Federation

Topilin Mikhail Vladimirovich

ORCID |

LUKOIL-Engineering VolgogradNIPImorneft

Volgograd, Russian Federation

Merentsov Nickolay Anatolievich
Candidate Of Technical Sciense, Associate Professor

ORCID |

Volgograd State Technical University

Volgograd, Russian Federation

Golovanchikov Aleksandr Borisovich
Doctor of Technical Sciences, Professor

ORCID |

Volgograd State Technical University

Volgograd, Russian federation

Keywords: flow structure, hydrodynamics, gas dynamics, flow rate, velocity profile, mass exchange, heat and mass exchange, rectification, absorption, adsorption

For citation: Persidskiy A.V., Topilin M.V., Merentsov N.A., Golovanchikov A.B. Indicator-free information and measurement method for determining flow structure parameters in heat and mass exchangers. Modeling, Optimization and Information Technology. 2023;11(1). URL: https://moitvivt.ru/ru/journal/pdf?id=1290 DOI: 10.26102/2310-6018/2023.40.1.014 (In Russ).

317

Full text in PDF

Received 12.12.2022

Revised 09.02.2023

Accepted 28.02.2023

Published 31.03.2023